登录
首页 » Others » PCIe Base SPEC v.3.1

PCIe Base SPEC v.3.1

于 2020-12-12 发布
0 330
下载积分: 1 下载次数: 1

代码说明:

PCIe Base Specification Revision 3.1

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 水库调度遗传算法vb
    水利 水文 水库调度 遗传算法 VB程序
    2020-12-02下载
    积分:1
  • c++药品销售管理系统
    c++药品销售管理系统,用mfc制作,以Access作为后台数据库,ODBC连接,简单的c++课设题目
    2021-05-06下载
    积分:1
  • 套公寓管理系统的开发文档
    一套公寓管理系统的开发文档,需求分析、概要设计
    2020-12-08下载
    积分:1
  • Alex围棋游戏源码
    Alex围棋游戏源码研究目标、研究内容和拟解决的关键问题经过对围棋对弈软件的分析,基本确定围棋对弈系统的研究目标为:该系统功能包括:人机围棋对弈功能,局域网围棋对弈功能,局域网对弈时聊天功能,对弈中悔棋功能,求和功能及其他扩展功能等。研究内容为:1. 实现游戏模式选择功能:通过主界面,可以选择围棋的游戏模式。有人机对弈,局域网对弈等选择。2. 实现人机对弈中人工智能:在人机对弈中,电脑可以根据棋局判断下一步下子。3. 实现局域网对弈功能:选择局域网对弈后,登陆服务器,可以选择游戏台号,与已经选择同台号的对手对弈。4. 实现局域网对弈时的聊天功能:在局域网对
    2020-12-03下载
    积分:1
  • SIFT序实现
    SIFT代码实现。本代码是通过Matlab实现了SIFT。可以作为理解SIFT原理以及把握过程细节的参考。与博文《SIFT代码V1版本(Matlab)实现以及思考的问题》配套。
    2020-07-04下载
    积分:1
  • 微信轰炸(.vbs脚本)
    微信轰炸(.vbs脚本)
    2020-12-11下载
    积分:1
  • LMS和归化LMS算法收敛门限与步长的确定
    算法 归一化很实用, LMS和归一化LMS算法收敛门限与步长的确定
    2020-12-10下载
    积分:1
  • 【PDF】《Machine learning A Probabilistic Perspective》 MLAPP;by Kevin Murphy
    完整版,带目录,机器学习必备经典;大部头要用力啃。Machine learning A Probabilistic PerspectiveMachine LearningA Probabilistic PerspectiveKevin P. MurphyThe mit PressCambridge, MassachusettsLondon, Englando 2012 Massachusetts Institute of TechnologyAll rights reserved. No part of this book may be reproduced in any form by any electronic or mechanicalmeans(including photocopying, recording, or information storage and retrieval)without permission inwriting from the publisherFor information about special quantity discounts, please email special_sales@mitpress. mit. eduThis book was set in the HEx programming language by the author. Printed and bound in the UnitedStates of AmLibrary of Congress Cataloging-in-Publication InformationMurphy, Kevin Png:a piobabilistctive/Kevin P. Murphyp. cm. -(Adaptive computation and machine learning series)Includes bibliographical references and indexisBn 978-0-262-01802-9 (hardcover: alk. paper1. Machine learning. 2. Probabilities. I. TitleQ325.5M872012006.31-dc232012004558109876This book is dedicated to alessandro, Michael and stefanoand to the memory of gerard Joseph murphyContentsPreactXXVII1 IntroductionMachine learning: what and why?1..1Types of machine learning1.2 Supervised learning1.2.1Classification 31.2.2 Regression 83 Unsupervised learning 91.3.11.3.2Discovering latent factors 111.3.3 Discovering graph structure 131.3.4 Matrix completion 141.4 Some basic concepts in machine learning 161.4.1Parametric vs non-parametric models 161.4.2 A simple non-parametric classifier: K-nearest neighbors 161.4.3 The curse of dimensionality 181.4.4 Parametric models for classification and regression 191.4.5Linear regression 191.4.6Logistic regression1.4.7 Overfitting 221.4.8Model selection1.4.9No free lunch theorem242 Probability2.1 Introduction 272.2 A brief review of probability theory 282. 2. 1 Discrete random variables 282. 2.2 Fundamental rules 282.2.3B292. 2. 4 Independence and conditional independence 302. 2. 5 Continuous random variable32CONTENTS2.2.6 Quantiles 332.2.7 Mean and variance 332.3 Some common discrete distributions 342.3.1The binomial and bernoulli distributions 342.3.2 The multinomial and multinoulli distributions 352. 3.3 The Poisson distribution 372.3.4 The empirical distribution 372.4 Some common continuous distributions 382.4.1 Gaussian (normal) distribution 382.4.2Dte pdf 392.4.3 The Laplace distribution 412.4.4 The gamma distribution 412.4.5 The beta distribution 422.4.6 Pareto distribution2.5 Joint probability distributions 442.5.1Covariance and correlation442.5.2 The multivariate gaussian2.5.3 Multivariate Student t distribution 462.5.4 Dirichlet distribution 472.6 Transformations of random variables 492. 6. 1 Linear transformations 492.6.2 General transformations 502.6.3 Central limit theorem 512.7 Monte Carlo approximation 522.7.1 Example: change of variables, the MC way 532.7.2 Example: estimating T by Monte Carlo integration2.7.3 Accuracy of Monte Carlo approximation 542.8 Information theory562.8.1Entropy2.8.2 KL dive572.8.3 Mutual information 593 Generative models for discrete data 653.1 Introducti653.2 Bayesian concept learning 653.2.1Likelihood673.2.2 Prior 673.2.3P683.2.4Postedictive distribution3.2.5 A more complex prior 723.3 The beta-binomial model 723.3.1 Likelihood 733.3.2Prior743.3.3 Poster3.3.4Posterior predictive distributionCONTENTS3.4 The Dirichlet-multinomial model 783. 4. 1 Likelihood 793.4.2 Prior 793.4.3 Posterior 793.4.4Posterior predictive813.5 Naive Bayes classifiers 823.5.1 Model fitting 833.5.2 Using the model for prediction 853.5.3 The log-sum-exp trick 803.5.4 Feature selection using mutual information 863.5.5 Classifying documents using bag of words 84 Gaussian models4.1 Introduction974.1.1Notation974. 1.2 Basics 974. 1.3 MlE for an mvn 994.1.4 Maximum entropy derivation of the gaussian 1014.2 Gaussian discriminant analysis 1014.2.1 Quadratic discriminant analysis(QDA) 1024.2.2 Linear discriminant analysis (LDA) 1034.2.3 Two-claSs LDA 1044.2.4 MLE for discriminant analysis 1064.2.5 Strategies for preventing overfitting 1064.2.6 Regularized LDA* 104.2.7 Diagonal LDA4.2.8 Nearest shrunken centroids classifier1094.3 Inference in jointly Gaussian distributions 1104.3.1Statement of the result 1114.3.2 Examples4.3.3 Information form 1154.3.4 Proof of the result 1164.4 Linear Gaussian systems 1194.4.1Statement of the result 1194.4.2 Examples 1204.4.3 Proof of the result1244.5 Digression: The Wishart distribution4.5. 1 Inverse Wishart distribution 1264.5.2 Visualizing the wishart distribution* 1274.6 Inferring the parameters of an MVn 1274.6.1 Posterior distribution of u 1284.6.2 Posterior distribution of e1284.6.3 Posterior distribution of u and 2* 1324.6.4 Sensor fusion with unknown precisions 138
    2020-12-10下载
    积分:1
  • 深度学习的matlab代码
    深度学习的简单matlab代码,经检验可以用。对手写数字小图像进行有标签学习,分类为10,单机运行5000张图片后,可进行0-9的手写数字识别。
    2020-12-11下载
    积分:1
  • 基于opencv的blob分析代码
    高性能的blob分析代码,在缺陷检测,目标定位中有着重要应用。希望对大家有帮助。
    2020-12-06下载
    积分:1
  • 696518资源总数
  • 106155会员总数
  • 8今日下载