登录
首页 » Others » ACM模板(上海交大、浙大、吉林大学、邝斌)

ACM模板(上海交大、浙大、吉林大学、邝斌)

于 2020-12-12 发布
0 163
下载积分: 1 下载次数: 1

代码说明:

上海交大ACM模板、浙江大学ACM模板、邝斌的ACM模板-2014-5、吉林大学ACM常用算法代码

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论


0 个回复

  • labview MP3音乐播放器.vi
    播放电脑中的歌曲。
    2020-03-25下载
    积分:1
  • 个人博客 html模板
    个人博客 html 模板个人博客 html 模板个人博客 html 模板
    2020-12-04下载
    积分:1
  • WiFi直连及图片双向发送
    实现安卓客户端一对一及一对多的WiFi直连,通过异步任务完成客户端的图片双向传输
    2020-12-04下载
    积分:1
  • 经典Esprit空间谱估计算法的代码
    经典Esprit空间谱估计算法的代码 适合初学空间谱估计的人
    2020-12-09下载
    积分:1
  • 基于DSP的图像处理(图像锐化)
    这个是基于DSP 55XX系列的,在我应用的5509上调试运行良好,可以实现图像的锐化。
    2020-12-09下载
    积分:1
  • Vivado约束指导手册
    Vivado约束指导手册输入端口到输出端口路径在从输入端口直接到输出端口的路径上,数据:不需要在器件内部锁存(atch),直接从输入端口到输出端口。他们通常被称为ln-to-out数据路径端口时钟可以是虚拟时钟也可以是设计时钟路径举例图3-1描述了上面所有的路径,在此例图中,设计时钟CLKo可被用作端口时钟,这样既可以约束D|N延时也可以约束DOUT延时FPGA DEVICEBoardDeviceInternal Delay REGAData Path DelayREGB Internal DelayBoardDINi DOUT Device○A4InpOutputDelayBUFGPort ClockCLKOPort clockIn-2-out Data PathFigure 3-1: Path Example时钟路径部分每一个时钟路径由三个部分组成:源时钟路径数据路径目标时钟路径源时钟路径源时钟路径是由源时钟从它的源点(典型的是输入端口)到发送时序单元的时钟引脚之间的路径。对于从输入端口起始的时序路径来说,就不存在源时钟路径数据路径对内部电路,数据路径是发送时序单元和捕捉时序单元之间的路径发送时序单元的有效时钟管脚称为路径起始点捕捉时序单元的数据输入管脚称为路径结束点对于输入端口路径,数据路径起始于输入端口。输入端口是路径的起始点对于输出端口路径,数据路径结朿语输岀端口。输岀端口是路径的结束点。目标时钟路径目标时钟路径是由目标时钟从其源点(典型的是输入端口)到捕捉时序单元的时钟管脚之间的路径。对于结束于输出端口的时序路径,就没有目标时钟路径图3-2显示了3段典型的时序路径REGAData PathREGBEndpointSource Clock PathStartpointDestination Clock PathFigure 3-2: Typical Timing PathSetup和Hold分析vⅳ ado ide分析时序并且在时序路径终点时候报告时序裕量。时序裕量是指在时序路径终点数据要求时间和抵达时间的差异。如果裕量为正,从时序的角度考虑此路径是有效的。Setup检查为了计算数据所需的 setup时间,时序引擎:1.决定源时钟和目的时钟之间的普通周期。如果没有被发现,为分析考虑多达1000个时钟周期。2.检查覆盖普通周期上的起始点和终点所有上升和下降沿。3.在任何两个有效 active沿之间的最小正差值dela。这个deta被称为 setup分析的时序路径要求Setup路径要求示例假象2个寄存器之间的一条路径,这些寄存器由其相应时钟上升沿触发。这条路径有效的时钟沿只有上升沿。时钟定义如下:.clko周期6nsck1周期4nsCommon periodclko launch edgesSetup(1)Setup(2)clk1 capture edgesOns 2ns 4nss 8n5 10ns 12nsFigure 3-3: Setup Path Requirement Example图33显示有2个单独的源和目的时钟沿有资格受到 setup分析: setup(1和 setup(2):源时钟发送沿时间:0ns+1*T(ck0)=6ns目的时钟抓取沿时间:0ns+2*(ck1)=8nsSetup Path Requirement=抓取沿时间-发送沿时间=2ns在计算路径要求时候,需要考虑2个重要的点:1.时钟沿是理想的,那就是说,时钟树插入延迟不在考虑之内2.默认时钟在0时间点是 phase-aligned,除非他们的波形定义引进了 phase-shit。异步时钟相位关系未知。时序引擎在分析其间路径时候会考虑默认值。关于异步时钟的更多内容看下部分Setup分析数据要求时间Setup分析数据要求时间是指为了让目的单元能安全的采样数据,数据必须在这个时间点之前稳定。这个值基于:目的时钟采样沿时间.目地时钟延时源时钟和目的时钟的不确定性目的单元 setup时间Setup分析的数据抵达时间Setup分析的数据抵达时间,是指由源时钟发送的数据在路径终点的稳定时候所需要的时间。它的值基于:源时钟发送沿时间源时钟延时数据路径延时数据路径延时包括所有从起点到终点的单元(cel)和线(ne延时。在时序报告中, Vivado将 setup时序考虑为数据路径的一部分。相应的,数据到达和要求时间的公式为:Data Required Time (setup)= destination clock capture edge time+destination clock path delayclock uncertaintyData Arrival Time(setup)= source clock launch edge timesource clock path delay+ datapath delaysetup timeSetup裕量是指要求时间和实际抵达时间的差值:Slack (setup)= Data Required Time -Data Arrival Time在输入数据引脚寄存器上 Setup裕量为负值,说明寄存器有可能锁存到未知的值跳转到错误状态Hod检查Hod裕量的计算与 setup裕量计算直接相关。当 setup分析证明了在最悲观的情况下数据可以被安全捕捉,hold分析确保了:同样的数据不可能被前面目地时钟沿错误的抓取下一个源时钟沿发送的数据不能被用来分析 setup的目的数据沿抓取因此,为了找到hold分析的时序路径,时序引擎考虑了所有为 setup分析的源和目的时钟沿结合的可能。对每一种可能的组合,时序引擎:检查发送沿和减去一个目的时钟周期的抓取沿之间的差值.检查了加上一个源时钟周期的发送沿和抓取沿之间的差值.只保留时间差值最大的发送沿和抓取沿hold路径要求示例采用page33中 setup路径要求示例中的时钟。对于 setup分析那仅有2个可能的时钟沿组合:Setup Path Requirement (S1)=1*T(clk1)-0*T(clk0)= 4nsSetup Path Requirement (S2)=2*T(clk1)-1*T(clk0)=2ns那么相应的hod要求如下:For setup s1:Hold path Requirement (Hla)-(1*T(clk1)-1*T(clk1))-0*T(clko)=onsHold Path Requirement (Hlb)=1*T(clkl)-(0*T(clk0)+I*T(clko))=-2nsFor setup $2:Hold Path Requirement (H2a)=(2*T(clk1)-1*T(clk1))-1*T(clko)2nsHold path Requirement(H2b)=2*T(clk1)-(1*T(clk0)+1*T(clk0))=-4ns从上面可以看出最大的要求时间是Ons,这正好与源时钟和目的时钟第一次上升沿相吻合。Hold路径要求示例,page36显示了 setup检查沿和他们相关的hold检查。cIko launch edgesHla S1 H1b/H2a522bclk1 capture edgesOns 2ns 4ns 6ns 8ns 10ns 12nsFigure 3-4: Hold Path Requirement Example此例中,最终的hod要求时间不是来源于最紧的 setup要求。这是因为所有可能的 setup沿都会被考虑在内,是为了找到最又挑战性的hod要求。正如在 setup分析中,数据要求时间和数据抵达时间是基于以下条件计算的:源时钟发送沿时间.目的时钟抓取沿时间源和目的时钟延时时钟不确定性数据延时.目的寄存器hod时间Data Required Time (hold)= destination clock capture edge timedestination clock path delayclock uncertaintyData Arrival Time (hold)= source clock launch edge timesource clock path delaydatapath delayhold timeHod裕量是要求时间和抵达时间的差值Slack (hold)= Data Arrival Time Data Required Time正的时序裕量意味着即使在最悲观的情况下数据也不会被错误的时钟沿抓取。而负的hold裕量说明抓取的数据错误,而且寄存器可能进入不稳定状态。矫正( recovery和移除( removal分析矫正和移除时序检查与 setup和hold检查相似,区别就是它们应用于异步数据管脚例如set或者clear o对于异步复位的寄存器.矫正时间是异步 reset信号为了锁定新数据已经切换到它的无效状态之后,到下一个有效时钟沿之间的最小时间。移除时间是在异步复位信号安全切换到其无效状态之前,到第一个有效时钟沿之后的最小时间。下面的等式描述了这两种分析的sack是如何计算的Recovery check下面的等式描述了下面如何计算:Data Required Time (recovery ) =destination clock edge start time+ destination clock path delayclock uncertaintyData Arrival Time (recovery )= source clock edge start timesource clock path delaydatapath delayrecovery timeSlack (recovery)= Data Required Time Data Arrival TimeRemoval checkData Required Time (removal)= destination clock edge start timedestination clock path delayclock uncertaintyData Arrival Time (removal)= source clock edge start timesource clock path delay+ datapath delayremoval timeSlack (removal)= Data Arrival Time -Data Required Time正如 setup和hold检査,一个负的 recovery裕量和 remova裕量说明寄存器可能进入亚稳态,并且将未知的电子层带入设计中。定义时钟时钟数字设计中,时钟提供了从寄存器到寄存器之间可靠的传输数据的时间参考。 Vivado ide时序引擎用时钟特征来:计算时钟路径要求以裕量计算的方式报告设计时序裕量更多信息,参考时序分析这章为了得到最精确的最大的时序路径覆盖,时钟必须合理的定义。可以用下面的特征定义时钟:源时钟是指定义在时钟驱动引脚或者时钟树跟端口的时钟时钟沿可以由周期和波形特性的组合描述周期是ns级的,与描述的波形的时间周期相匹配.时钟波形是在时钟周期里,在数ns内时钟上升沿和下降沿绝对时间的列表列表必须包含偶数个值。第一个值一般与第一个上升沿吻合,除非另外指定,默认的时钟占空比是50%相位是ns。如图4-1所示,ck0周期10ns,占空比50%,相位0ns。Ck1周期8ns,占空比75%,相位2ns。CIkO: period 10, waveform =10 5]CIk1: period =8, waveform=2850%50%ClaOns5ns10ns15ns25%75%clkbOns 2ns8ns 10ns16nsFigure 4-1: Clock Waveforms Example传播【 propagated clock)时钟周期和波形特征体现了时钟的理想特征。当时钟进入FPGA器件并且经过时钟树传播时候,时钟沿会有延时而且会随着噪声和硬件特性而改变。这些特点被称为时钟网络延时( latency)和时钟不确定{ uncertainty)时钟不确定性包含下面内容:clock jitterphase error任何额外指定的不确定Vivado会默认的将时钟作为传播时钟,这意味着,这是非理想的时钟。这么做是为了提供包含时钟树插入延时和不确定性的裕量的值。特定硬件资源
    2021-05-06下载
    积分:1
  • labview modbus协议读寄存器
    labview通过串口读寄存器程序,自动CRC校验。
    2020-12-10下载
    积分:1
  • 自己写的,平衡小车代码,亲测有效
    前几天一直在整平衡小车,想用这个理解一下pid,并调一调带编码盘的电机。首先谈谈我对pid算法的理解,刚开始以为平衡小车是采取的串级pid来是小车平衡,就是通过角度算出此时的pwm,在通过这个pwm去当作速度环的入口参数,通过编码盘来获取小车的速度控制小车由角度环指定速度下行驶。但通过实践并不是这样,速度环和角度环应该是两个独立的系统,角度环用来让小车快速的恢复到平衡状态,如果初始化陀螺仪时陀螺仪的角度正好重力重合,那么你的小车就会平衡,否则就会向一个方向加速,只至倒下,加上速度环就会解决这一问题,速度环是为了消除小车的位移,让小车能够在一定的位移范围内调整角度,如果下车像一个方向一直加速
    2020-11-30下载
    积分:1
  • Windows API开发详解:函数、接口、实例---源代码
    Windows7是微软公司推出的最新的桌面操作系统,《Windows API开发详解:函数、接口、编程实例》采用图解的方式以及生动的操作实例,图文并茂地向用户介绍了Windows7操作系统。《Windows API开发详解:函数、接口、编程实例》共分12讲,第1~第4讲介绍了Windows7的新特性及安装、Windows7的基本操作、如何自定义桌面以及Windows资源管理器的操作,使读者可以很快掌握Windows7的基本操作。第5~第8讲主要讲解了Windows7常用的组件、如何播放和制作多媒体文件以及互联网的相关知识,通过实例的讲解,读者可以很快掌握Windows7日常工作和娱乐所需的操作
    2020-12-02下载
    积分:1
  • Matlab对于2XSK信号的产生处理
    本实例对通信原理中2ASK、2PSK、2FSK以及2DPSK信号都做了类似的处理,描述了信号调制、加噪声、到最后解调比较的全过程
    2017-03-04下载
    积分:1
  • 696518资源总数
  • 105273会员总数
  • 10今日下载