登录
首页 » matlab » mvcnn-master

mvcnn-master

于 2020-12-04 发布
0 144
下载积分: 1 下载次数: 1

代码说明:

说明:  计算机视觉中一个长期存在的问题是关于用于识别的三维形状的表示:三维形状是否应该使用操作在其原生三维格式(如体素网格或多边形网格)上的描述符来表示,还是可以使用基于视图的描述符来有效地表示?我们在学习从一组二维图像上呈现的视图中识别三维图形的背景下解决了这个问题。我们首先介绍了一个经过训练的标准CNN架构,可以独立地识别呈现在视图中的形状,并展示了一个3D形状甚至可以从中识别出来(A longstanding question in computer vision concerns the representation of 3D shapes for recognition: should 3D shapes be represented with descriptors operating on their native 3D formats)

文件列表:

mvcnn-master, 0 , 2019-01-04
mvcnn-master\.gitignore, 4 , 2019-01-04
mvcnn-master\.gitmodules, 222 , 2019-01-04
mvcnn-master\LICENCE, 1074 , 2019-01-04
mvcnn-master\README.md, 4408 , 2019-01-04
mvcnn-master\caffe, 0 , 2019-01-04
mvcnn-master\caffe\MVCNNDataLayer.py, 3708 , 2019-01-04
mvcnn-master\caffe\MVCNNDataLayerPreTrain.py, 3211 , 2019-01-04
mvcnn-master\caffe\README.md, 600 , 2019-01-04
mvcnn-master\caffe\alexNet.prototxt, 5384 , 2019-01-04
mvcnn-master\caffe\ilsvrc_2012_mean.npy, 1572944 , 2019-01-04
mvcnn-master\caffe\mvccn_12view.prototxt, 6102 , 2019-01-04
mvcnn-master\caffe\mvcnn_PreTrain.prototxt, 249 , 2019-01-04
mvcnn-master\caffe\mvcnn_Train.prototxt, 263 , 2019-01-04
mvcnn-master\caffe\trainAlex.py, 321 , 2019-01-04
mvcnn-master\caffe\trainCNN.py, 333 , 2019-01-04
mvcnn-master\caffe\trainMVCNN.py, 318 , 2019-01-04
mvcnn-master\cnn_shape.m, 7128 , 2019-01-04
mvcnn-master\cnn_shape_get_batch.m, 4605 , 2019-01-04
mvcnn-master\cnn_shape_get_features.m, 12834 , 2019-01-04
mvcnn-master\cnn_shape_init.m, 6412 , 2019-01-04
mvcnn-master\cnn_shape_train.m, 16907 , 2019-01-04
mvcnn-master\contributors.txt, 56 , 2019-01-04
mvcnn-master\data, 0 , 2019-01-04
mvcnn-master\data\.gitignore, 25 , 2019-01-04
mvcnn-master\dataset, 0 , 2019-01-04
mvcnn-master\dataset\setup_imdb_generic.m, 102 , 2019-01-04
mvcnn-master\dataset\setup_imdb_modelnet.m, 8592 , 2019-01-04
mvcnn-master\dataset\setup_imdb_shapenet.m, 3249 , 2019-01-04
mvcnn-master\dependencies, 0 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96, 0 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\.gitignore, 31 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\COPYRIGHT, 1486 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\Makefile, 993 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\Makefile.win, 900 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\README, 20224 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\blas, 0 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\blas\Makefile, 293 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\blas\blas.h, 702 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\blas\blasp.h, 16529 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\blas\daxpy.c, 1274 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\blas\ddot.c, 1280 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\blas\dnrm2.c, 1375 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\blas\dscal.c, 1104 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\heart_scale, 27670 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\linear.cpp, 57430 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\linear.def, 426 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\linear.h, 2211 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\matlab, 0 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\matlab\Makefile, 1504 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\matlab\README, 7470 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\matlab\libsvmread.c, 4063 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\matlab\libsvmwrite.c, 2341 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\matlab\linear_model_matlab.c, 3545 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\matlab\linear_model_matlab.h, 166 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\matlab\make.m, 1139 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\matlab\predict.c, 8517 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\matlab\train.c, 10861 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\predict.c, 5338 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\python, 0 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\python\Makefile, 32 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\python\README, 12195 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\python\liblinear.py, 9373 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\python\liblinearutil.py, 8208 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\train.c, 9109 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\tron.cpp, 5186 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\tron.h, 687 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\windows, 0 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\windows\liblinear.dll, 182272 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\windows\libsvmread.mexw64, 11264 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\windows\libsvmwrite.mexw64, 10240 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\windows\predict.exe, 128512 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\windows\predict.mexw64, 16896 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\windows\train.exe, 179200 , 2019-01-04
mvcnn-master\dependencies\liblinear-1.96\windows\train.mexw64, 61440 , 2019-01-04
mvcnn-master\dependencies\matconvnet, 0 , 2019-01-04
mvcnn-master\dependencies\vlfeat, 0 , 2019-01-04
mvcnn-master\evalkit, 0 , 2019-01-04
mvcnn-master\evalkit\Evaluator.js, 5553 , 2019-01-04
mvcnn-master\evalkit\Metrics.js, 4769 , 2019-01-04
mvcnn-master\evalkit\README.txt, 1148 , 2019-01-04
mvcnn-master\evalkit\evaluate.js, 150 , 2019-01-04
mvcnn-master\evalkit\train.csv, 894149 , 2019-01-04
mvcnn-master\evalkit\val.csv, 128999 , 2019-01-04
mvcnn-master\exp_scripts, 0 , 2019-01-04
mvcnn-master\exp_scripts\confmat.m, 321 , 2019-01-04
mvcnn-master\exp_scripts\display_retrieval_results.m, 3539 , 2019-01-04
mvcnn-master\exp_scripts\display_right_wrong.m, 3109 , 2019-01-04
mvcnn-master\exp_scripts\learn_metric.m, 1634 , 2019-01-04
mvcnn-master\exp_scripts\prfigure.m, 1756 , 2019-01-04
mvcnn-master\exp_scripts\visualize_saliency.m, 2931 , 2019-01-04
mvcnn-master\get_imdb.m, 840 , 2019-01-04
mvcnn-master\rerank_retrieval.m, 1330 , 2019-01-04
mvcnn-master\run_experiments.m, 2384 , 2019-01-04
mvcnn-master\run_retrieval.m, 2471 , 2019-01-04
mvcnn-master\setup.m, 2522 , 2019-01-04
mvcnn-master\shape_compute_descriptor.m, 5257 , 2019-01-04
mvcnn-master\utils, 0 , 2019-01-04
mvcnn-master\utils\RenderMe, 0 , 2019-01-04
mvcnn-master\utils\RenderMe\RenderDepth, 0 , 2019-01-04

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • Untitled2
    说明:  二自由度平顺性分析,包括车身加速度,悬架动挠度,轮胎动载等,建立双质量二自由度模型(Two degrees of freedom ride analysis, including body acceleration, suspension deflection, tire dynamic load, etc., establish a dual mass two degree of freedom model)
    2019-06-19 10:00:15下载
    积分:1
  • 几个用c语言写的网络协议实践的程序,包括arp,ip改变,ip路游等...
    几个用c语言写的网络协议实践的程序,包括arp,ip改变,ip路游等--Several network protocol programs which are writed in c language, and includes arp, ip changes, ip rootway etc.
    2022-03-10 15:27:06下载
    积分:1
  • Project Outputs for 20180323_enlink
    lora test board. and aceelerometer board for raspberry pi.
    2018-03-23 17:43:59下载
    积分:1
  • 本代码是基于labview的UDP点对点通信程序,已经在局域网内测试通过...
    本代码是基于labview的UDP点对点通信程序,已经在局域网内测试通过-The code is based on the LabVIEW UDP peer-to-peer communication program has been tested in the LAN
    2023-03-19 22:55:03下载
    积分:1
  • ecshop订单提醒
    说明:  可以跟踪ECSHOP商城订单状态,实时提醒。(It can track the order status of ECSHOP mall and remind it in real time.)
    2020-06-24 13:00:02下载
    积分:1
  • 《Python网络数据采集》
    说明:  《Python网络数据采集》 第一部分 创建爬虫 第1章 初见网络爬虫 2 1.1 网络连接 2 1.2 BeautifulSoup简介 4 1.2.1 安装BeautifulSoup 5 1.2.2 运行BeautifulSoup 7 1.2.3 可靠的网络连接 8 第2章 复杂HTML解析 11 2.1 不是一直都要用锤子 11 2.2 再端一碗BeautifulSoup 12 2.2.1 BeautifulSoup的find()和findAll() 13 2.2.2 其他BeautifulSoup对象 15 2.2.3 导航树 16 ……(Python Network Data Acquisition)
    2019-05-07 11:58:38下载
    积分:1
  • Kalman坐标系转换
    卡尔曼滤波,由笛卡尔坐标到极坐标的转换,并给出测量噪声的相关矩阵R的公式,MATLAB即可实现。(坐标系转化的推导文档)(Kalman filter, from Descartes coordinates to polar coordinates conversion, and gives the correlation matrix of measurement noise R formula, MATLAB can be achieved. (derivation document of coordinate transformation))
    2020-12-01 11:19:26下载
    积分:1
  • beta2
    求光在光线中传输的二阶色散参量的代码,很好用。(The two order dispersion code, very good.)
    2018-01-31 21:02:11下载
    积分:1
  • Welding_PWHT_Sample-video
    Fortran welding video sample
    2019-06-28 12:49:18下载
    积分:1
  • PTC_EV
    simulink联合仿真,用于纯电动汽车的仿真研究,包括SOC、循环工况等方面的仿真(Simlink Joint Simulation for Pure Electric Vehicle, including SOC, Cycle Conditions and so on)
    2019-05-21 17:33:23下载
    积分:1
  • 696518资源总数
  • 106010会员总数
  • 4今日下载