登录
首页 » Python » KNN

KNN

于 2021-01-22 发布
0 232
下载积分: 1 下载次数: 1

代码说明:

说明:  完成KNN聚类,是一种比较基础的聚类算法,根据与邻居之间的距离判断(finish knn cluster,it is a basic function,you can use it to complish a cluster)

文件列表:

KNN\.idea\.gitignore, 50 , 2020-11-01
KNN\.idea\inspectionProfiles\profiles_settings.xml, 174 , 2020-11-01
KNN\.idea\KNN.iml, 291 , 2020-11-01
KNN\.idea\misc.xml, 195 , 2020-11-01
KNN\.idea\modules.xml, 265 , 2020-11-01
KNN\.idea\workspace.xml, 5905 , 2020-11-02
KNN\datingTestSet.txt, 35725 , 2012-03-01
KNN\datingTestSet2.txt, 27067 , 2012-03-01
KNN\KNN_classify.py, 5532 , 2020-11-02
KNN\main.py, 544 , 2020-11-01
KNN\testDigits\0_0.txt, 1088 , 2010-10-07
KNN\testDigits\0_1.txt, 1088 , 2010-10-07
KNN\testDigits\0_10.txt, 1088 , 2010-10-07
KNN\testDigits\0_11.txt, 1088 , 2010-10-07
KNN\testDigits\0_12.txt, 1088 , 2010-10-07
KNN\testDigits\0_13.txt, 1088 , 2010-10-07
KNN\testDigits\0_14.txt, 1088 , 2010-10-07
KNN\testDigits\0_15.txt, 1088 , 2010-10-07
KNN\testDigits\0_16.txt, 1088 , 2010-10-07
KNN\testDigits\0_17.txt, 1088 , 2010-10-07
KNN\testDigits\0_18.txt, 1088 , 2010-10-07
KNN\testDigits\0_19.txt, 1088 , 2010-10-07
KNN\testDigits\0_2.txt, 1088 , 2010-10-07
KNN\testDigits\0_20.txt, 1088 , 2010-10-07
KNN\testDigits\0_21.txt, 1088 , 2010-10-07
KNN\testDigits\0_22.txt, 1088 , 2010-10-07
KNN\testDigits\0_23.txt, 1088 , 2010-10-07
KNN\testDigits\0_24.txt, 1088 , 2010-10-07
KNN\testDigits\0_25.txt, 1088 , 2010-10-07
KNN\testDigits\0_26.txt, 1088 , 2010-10-07
KNN\testDigits\0_27.txt, 1088 , 2010-10-07
KNN\testDigits\0_28.txt, 1088 , 2010-10-07
KNN\testDigits\0_29.txt, 1088 , 2010-10-07
KNN\testDigits\0_3.txt, 1088 , 2010-10-07
KNN\testDigits\0_30.txt, 1088 , 2010-10-07
KNN\testDigits\0_31.txt, 1088 , 2010-10-07
KNN\testDigits\0_32.txt, 1088 , 2010-10-07
KNN\testDigits\0_33.txt, 1088 , 2010-10-07
KNN\testDigits\0_34.txt, 1088 , 2010-10-07
KNN\testDigits\0_35.txt, 1088 , 2010-10-07
KNN\testDigits\0_36.txt, 1088 , 2010-10-07
KNN\testDigits\0_37.txt, 1088 , 2010-10-07
KNN\testDigits\0_38.txt, 1088 , 2010-10-07
KNN\testDigits\0_39.txt, 1088 , 2010-10-07
KNN\testDigits\0_4.txt, 1088 , 2010-10-07
KNN\testDigits\0_40.txt, 1088 , 2010-10-07
KNN\testDigits\0_41.txt, 1088 , 2010-10-07
KNN\testDigits\0_42.txt, 1088 , 2010-10-07
KNN\testDigits\0_43.txt, 1088 , 2010-10-07
KNN\testDigits\0_44.txt, 1088 , 2010-10-07
KNN\testDigits\0_45.txt, 1088 , 2010-10-07
KNN\testDigits\0_46.txt, 1088 , 2010-10-07
KNN\testDigits\0_47.txt, 1088 , 2010-10-07
KNN\testDigits\0_48.txt, 1088 , 2010-10-07
KNN\testDigits\0_49.txt, 1088 , 2010-10-07
KNN\testDigits\0_5.txt, 1088 , 2010-10-07
KNN\testDigits\0_50.txt, 1088 , 2010-10-07
KNN\testDigits\0_51.txt, 1088 , 2010-10-07
KNN\testDigits\0_52.txt, 1088 , 2010-10-07
KNN\testDigits\0_53.txt, 1088 , 2010-10-07
KNN\testDigits\0_54.txt, 1088 , 2010-10-07
KNN\testDigits\0_55.txt, 1088 , 2010-10-07
KNN\testDigits\0_56.txt, 1088 , 2010-10-07
KNN\testDigits\0_57.txt, 1088 , 2010-10-07
KNN\testDigits\0_58.txt, 1088 , 2010-10-07
KNN\testDigits\0_59.txt, 1088 , 2010-10-07
KNN\testDigits\0_6.txt, 1088 , 2010-10-07
KNN\testDigits\0_60.txt, 1088 , 2010-10-07
KNN\testDigits\0_61.txt, 1088 , 2010-10-07
KNN\testDigits\0_62.txt, 1088 , 2010-10-07
KNN\testDigits\0_63.txt, 1088 , 2010-10-07
KNN\testDigits\0_64.txt, 1088 , 2010-10-07
KNN\testDigits\0_65.txt, 1088 , 2010-10-07
KNN\testDigits\0_66.txt, 1088 , 2010-10-07
KNN\testDigits\0_67.txt, 1088 , 2010-10-07
KNN\testDigits\0_68.txt, 1088 , 2010-10-07
KNN\testDigits\0_69.txt, 1088 , 2010-10-07
KNN\testDigits\0_7.txt, 1088 , 2010-10-07
KNN\testDigits\0_70.txt, 1088 , 2010-10-07
KNN\testDigits\0_71.txt, 1088 , 2010-10-07
KNN\testDigits\0_72.txt, 1088 , 2010-10-07
KNN\testDigits\0_73.txt, 1088 , 2010-10-07
KNN\testDigits\0_74.txt, 1088 , 2010-10-07
KNN\testDigits\0_75.txt, 1088 , 2010-10-07
KNN\testDigits\0_76.txt, 1088 , 2010-10-07
KNN\testDigits\0_77.txt, 1088 , 2010-10-07
KNN\testDigits\0_78.txt, 1088 , 2010-10-07
KNN\testDigits\0_79.txt, 1088 , 2010-10-07
KNN\testDigits\0_8.txt, 1088 , 2010-10-07
KNN\testDigits\0_80.txt, 1088 , 2010-10-07
KNN\testDigits\0_81.txt, 1088 , 2010-10-07
KNN\testDigits\0_82.txt, 1088 , 2010-10-07
KNN\testDigits\0_83.txt, 1088 , 2010-10-07
KNN\testDigits\0_84.txt, 1088 , 2010-10-07
KNN\testDigits\0_85.txt, 1088 , 2010-10-07
KNN\testDigits\0_86.txt, 1088 , 2010-10-07
KNN\testDigits\0_9.txt, 1088 , 2010-10-07
KNN\testDigits\1_0.txt, 1088 , 2010-10-07
KNN\testDigits\1_1.txt, 1088 , 2010-10-07
KNN\testDigits\1_10.txt, 1088 , 2010-10-07

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • development-of-modern-spectral-analysis
    现在谱分析的发展,详细介绍了谱分析的发展情况,建议学习谱分析的相关人士阅读(Now the development of spectral analysis, spectral analysis described in detail the development of the proposed study and spectral analysis of the relevant people to read)
    2010-12-12 22:08:05下载
    积分:1
  • matlab-fir
    用窗函数法设计FIR数字滤波器,能熟悉矩形窗、海宁窗、汉明窗和布莱克曼窗。掌握用上述窗函数法设计FIR数字滤波器的原理和方法。熟悉线性相位FIR数字滤波器特性。了解各种窗函数对滤波特性的影响。 (FIR window design with a digital filter function can be familiar with the rectangular window, Haining window, Hamming window and Blackman window. Master window function with the FIR digital filter design theory and methods. Familiar with linear phase FIR digital filter characteristics. Learn a variety of window function on the filter characteristics.)
    2011-04-28 22:02:12下载
    积分:1
  • SAR-polarization-filtering-methods-
    SAR图像滤波方法的入门级文献,适合SAR图像处理的初学者使用(SAR polarization filtering methods literature)
    2013-11-22 15:43:33下载
    积分:1
  • chuandibibao
    模式识别-模糊聚类算法--传递闭包法,追踪法-matlab程序(Pattern Recognition- Fuzzy Clustering Algorithm- transitive closure procedures for law-matlab)
    2009-05-02 18:18:54下载
    积分:1
  • KFCMClust
    基于matlab的核模糊C-means聚类算法(KFCM),(Matlab-based nuclear Fuzzy C-means clustering algorithm (SN))
    2007-03-24 09:46:00下载
    积分:1
  • MATLAB
    ansys结构分析与MATLAB编程,详细的介绍了matlab在结构分析中的应用(ansys structural analysis and MATLAB programming, a detailed description of the matlab in Structural Analysis)
    2014-02-12 13:00:51下载
    积分:1
  • hurst2
    可以經過此檔案來計算hurst參數 檢驗數據是否可預期(do hurst)
    2009-10-15 20:28:32下载
    积分:1
  • chapter17
    Matlab编写的预测股票交易个程序,书上的源码!分享给需要的朋友!(Matlab prepared to predict stock trading programs, the source of the book! Send to a friend in need!)
    2014-05-30 10:07:55下载
    积分:1
  • paokeng_v57
    构成不同频率的调制信号,应用小区域方差对比,程序简单,本程序的性能已经超过其他算法。( Constituting the modulated signals of different frequencies, Application of small area variance comparison, simple procedures, This program has exceeded the performance of other algorithms.)
    2016-10-24 10:47:01下载
    积分:1
  • annexamples
    很多神经网络的应用程序:如感知器,自适应线性元件,BP网络,霍普菲尔德网络,竞争网络...适合初学者。(Many neural network applications: such as sensor, adaptive linear element, BP network, Hopfield networks, competitive networks ... suitable for beginners.)
    2009-11-28 14:42:48下载
    积分:1
  • 696518资源总数
  • 105877会员总数
  • 14今日下载