登录
首页 » matlab » DeepLearnToolbox-master

DeepLearnToolbox-master

于 2021-02-25 发布
0 173
下载积分: 1 下载次数: 3

代码说明:

说明:  深度学习算法包括CNN、SAE、DBN等,包含数据可以直接使用(Deep learning algorithms such as CNN, SAE, DBN and so on, including data)

文件列表:

DeepLearnToolbox-master, 0 , 2020-10-31
DeepLearnToolbox-master\.travis.yml, 249 , 2015-12-01
DeepLearnToolbox-master\CAE, 0 , 2020-10-31
DeepLearnToolbox-master\CAE\caeapplygrads.m, 1219 , 2015-12-01
DeepLearnToolbox-master\CAE\caebbp.m, 917 , 2015-12-01
DeepLearnToolbox-master\CAE\caebp.m, 1011 , 2015-12-01
DeepLearnToolbox-master\CAE\caedown.m, 259 , 2015-12-01
DeepLearnToolbox-master\CAE\caeexamples.m, 754 , 2015-12-01
DeepLearnToolbox-master\CAE\caenumgradcheck.m, 3618 , 2015-12-01
DeepLearnToolbox-master\CAE\caesdlm.m, 845 , 2015-12-01
DeepLearnToolbox-master\CAE\caetrain.m, 1148 , 2015-12-01
DeepLearnToolbox-master\CAE\caeup.m, 489 , 2015-12-01
DeepLearnToolbox-master\CAE\max3d.m, 173 , 2015-12-01
DeepLearnToolbox-master\CAE\scaesetup.m, 1937 , 2015-12-01
DeepLearnToolbox-master\CAE\scaetrain.m, 270 , 2015-12-01
DeepLearnToolbox-master\CNN, 0 , 2020-10-31
DeepLearnToolbox-master\CNN\cnnapplygrads.m, 575 , 2015-12-01
DeepLearnToolbox-master\CNN\cnnbp.m, 2141 , 2015-12-01
DeepLearnToolbox-master\CNN\cnnff.m, 1774 , 2015-12-01
DeepLearnToolbox-master\CNN\cnnnumgradcheck.m, 3430 , 2015-12-01
DeepLearnToolbox-master\CNN\cnnsetup.m, 2020 , 2015-12-01
DeepLearnToolbox-master\CNN\cnntest.m, 193 , 2015-12-01
DeepLearnToolbox-master\CNN\cnntrain.m, 845 , 2015-12-01
DeepLearnToolbox-master\CONTRIBUTING.md, 544 , 2015-12-01
DeepLearnToolbox-master\DBN, 0 , 2020-10-31
DeepLearnToolbox-master\DBN\dbnsetup.m, 557 , 2015-12-01
DeepLearnToolbox-master\DBN\dbntrain.m, 232 , 2015-12-01
DeepLearnToolbox-master\DBN\dbnunfoldtonn.m, 425 , 2015-12-01
DeepLearnToolbox-master\DBN\rbmdown.m, 90 , 2015-12-01
DeepLearnToolbox-master\DBN\rbmtrain.m, 1401 , 2015-12-01
DeepLearnToolbox-master\DBN\rbmup.m, 89 , 2015-12-01
DeepLearnToolbox-master\LICENSE, 1313 , 2015-12-01
DeepLearnToolbox-master\NN, 0 , 2020-10-31
DeepLearnToolbox-master\NN\nnapplygrads.m, 628 , 2015-12-01
DeepLearnToolbox-master\NN\nnbp.m, 1638 , 2015-12-01
DeepLearnToolbox-master\NN\nnchecknumgrad.m, 704 , 2015-12-01
DeepLearnToolbox-master\NN\nneval.m, 811 , 2015-12-01
DeepLearnToolbox-master\NN\nnff.m, 1849 , 2015-12-01
DeepLearnToolbox-master\NN\nnpredict.m, 192 , 2015-12-01
DeepLearnToolbox-master\NN\nnsetup.m, 1844 , 2015-12-01
DeepLearnToolbox-master\NN\nntest.m, 184 , 2015-12-01
DeepLearnToolbox-master\NN\nntrain.m, 2414 , 2015-12-01
DeepLearnToolbox-master\NN\nnupdatefigures.m, 1858 , 2015-12-01
DeepLearnToolbox-master\README.md, 8861 , 2015-12-01
DeepLearnToolbox-master\README_header.md, 2244 , 2015-12-01
DeepLearnToolbox-master\REFS.md, 950 , 2015-12-01
DeepLearnToolbox-master\SAE, 0 , 2020-10-31
DeepLearnToolbox-master\SAE\saesetup.m, 132 , 2020-10-31
DeepLearnToolbox-master\SAE\saetrain.m, 308 , 2015-12-01
DeepLearnToolbox-master\SAE\test_example_SAE.m, 891 , 2020-10-27
DeepLearnToolbox-master\create_readme.sh, 744 , 2015-12-01
DeepLearnToolbox-master\data, 0 , 2020-10-31
DeepLearnToolbox-master\data\mnist_uint8.mat, 14735220 , 2015-12-01
DeepLearnToolbox-master\tests, 0 , 2020-10-31
DeepLearnToolbox-master\tests\runalltests.m, 165 , 2015-12-01
DeepLearnToolbox-master\tests\test_cnn_gradients_are_numerically_correct.m, 552 , 2015-12-01
DeepLearnToolbox-master\tests\test_example_CNN.m, 981 , 2015-12-01
DeepLearnToolbox-master\tests\test_example_DBN.m, 1031 , 2015-12-01
DeepLearnToolbox-master\tests\test_example_NN.m, 3247 , 2015-12-01
DeepLearnToolbox-master\tests\test_example_SAE.m, 934 , 2015-12-01
DeepLearnToolbox-master\tests\test_nn_gradients_are_numerically_correct.m, 749 , 2015-12-01
DeepLearnToolbox-master\util, 0 , 2020-10-31
DeepLearnToolbox-master\util\allcomb.m, 2618 , 2015-12-01
DeepLearnToolbox-master\util\expand.m, 1958 , 2015-12-01
DeepLearnToolbox-master\util\flicker.m, 208 , 2015-12-01
DeepLearnToolbox-master\util\flipall.m, 80 , 2015-12-01
DeepLearnToolbox-master\util\fliplrf.m, 543 , 2015-12-01
DeepLearnToolbox-master\util\flipudf.m, 576 , 2015-12-01
DeepLearnToolbox-master\util\im2patches.m, 313 , 2015-12-01
DeepLearnToolbox-master\util\isOctave.m, 108 , 2015-12-01
DeepLearnToolbox-master\util\makeLMfilters.m, 1895 , 2015-12-01
DeepLearnToolbox-master\util\myOctaveVersion.m, 169 , 2015-12-01
DeepLearnToolbox-master\util\normalize.m, 97 , 2015-12-01
DeepLearnToolbox-master\util\patches2im.m, 242 , 2015-12-01
DeepLearnToolbox-master\util\randcorr.m, 283 , 2015-12-01
DeepLearnToolbox-master\util\randp.m, 2083 , 2015-12-01
DeepLearnToolbox-master\util\rnd.m, 49 , 2015-12-01
DeepLearnToolbox-master\util\sigm.m, 48 , 2015-12-01
DeepLearnToolbox-master\util\sigmrnd.m, 126 , 2015-12-01
DeepLearnToolbox-master\util\softmax.m, 256 , 2015-12-01
DeepLearnToolbox-master\util\tanh_opt.m, 54 , 2015-12-01
DeepLearnToolbox-master\util\visualize.m, 1072 , 2015-12-01
DeepLearnToolbox-master\util\whiten.m, 183 , 2015-12-01
DeepLearnToolbox-master\util\zscore.m, 137 , 2015-12-01

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • mpsk星座图
    说明:  主要运用matlab仿真mpsk、16qam的星座图,里面有很多关于函数的参数注释,适合初学者(Realization of MPSK 16QAM constellation in MATLAB)
    2020-12-06 20:29:23下载
    积分:1
  • calculate_current
    function [ Current,impedance_matrix,matrix_excitation] = calculate_current(length,Frequency,no_divisions, Radius)
    2013-02-03 03:54:46下载
    积分:1
  • lsp-master
    通过LSP 实现网络流量监控和限制,还能够拦截篡改消息(Network traffic monitoring and restriction through LSP)
    2017-09-22 17:31:52下载
    积分:1
  • c# winform html辑器 示例源码
    快捷键 功能ctrl b 给选中字设置为加粗ctrl c 复制选中内容ctrl x 剪切选中内容ctrl v 粘贴ctrl y 重新执行上次操作ctrl z 撤销上一次操作ctrl i 给选中字设置为斜体ctrl u 给选中字加下划线ctrl a 全部选中shift enter 软回车
    2013-09-22下载
    积分:1
  • wuziqirenji
    c语言编写的人机对战版五子棋,GUI绘图,API函数制作(C Language Written Man-Machine Game Version Gobang, GUI Drawing, API Function Making)
    2019-06-07 15:24:00下载
    积分:1
  • power_wind_dfig
    双馈风力发电机组Matlab系统仿真模型,可以自由调试电机相关参数(power wind DFIG)
    2013-10-15 13:36:43下载
    积分:1
  • MATLAB的QPSK在瑞利、高斯和莱斯信道下仿真
    MATLAB的QPSK在瑞利、高斯和莱斯信道下仿真(The QPSK of MATLAB is simulated under Rayleigh, Gauss and rice channels.)
    2018-04-16 11:13:05下载
    积分:1
  • fwdmalawmc
    Abstract—In this paper, we study the joint estimation of inphase and quadrature-phase (I/Q) imbalance, carrier frequency offset (CFO), and channel response for multiple-input multipleoutput (MIMO) orthogonal frequency division multiplexing (OFDM) systems using training sequences. A new concept called channel residual energy (CRE) is introduced. We show that by minimizing the CRE, we can jointly estimate the I/Q imbalance and CFO without knowing the channel response. The proposed method needs only one OFDM block for training and the training symbols can be arbitrary. Moreover when the training block consists of two repeated sequences, a low complexity two-step approach is proposed to solve the joint estimation problem. Simulation results show that the mean-squared error (MSE) of the proposed method is close to the Cramer-Rao bound (CRB). Index Terms—MIMO OFDM, CFO, I/Q imbalance, channel estimation.
    2012-03-29 16:33:58下载
    积分:1
  • oscilloscope_src
    Source code for Oscilloscope on Windows.
    2020-06-24 10:40:02下载
    积分:1
  • SV_control
    异步电机空间矢量控制,使用了磁链观测器,虽然是开环观测 但是性能依然良好(Space vector control induction motor, using a flux observer, though, is the open-loop observer but the performance is still good)
    2013-10-23 18:01:12下载
    积分:1
  • 696518资源总数
  • 105877会员总数
  • 14今日下载