登录
首页 » matlab » FastSVDD-master

FastSVDD-master

于 2021-03-08 发布
0 175
下载积分: 1 下载次数: 4

代码说明:

说明:  支持向量数据描述(Support Vector Data Description,SVDD)是一种单值分类算法,能够实现目标样本和非目标样本的区分,通常应用于异常检测和故障检测等领域。(Support vector data description (SVDD) is a single valued classification algorithm, which can distinguish target samples from non target samples. It is usually used in anomaly detection and fault detection.)

文件列表:

FastSVDD-master, 0 , 2015-05-19
FastSVDD-master\.gitignore, 27 , 2015-05-19
FastSVDD-master\Code, 0 , 2015-05-19
FastSVDD-master\Code\Ellipse, 0 , 2015-05-19
FastSVDD-master\Code\Ellipse\fsvdd, 0 , 2015-05-19
FastSVDD-master\Code\Ellipse\fsvdd\computeKgm.m, 812 , 2015-05-19
FastSVDD-master\Code\Ellipse\fsvdd\decn.png, 10354 , 2015-05-19
FastSVDD-master\Code\Ellipse\fsvdd\ellipse.mat, 6342 , 2015-05-19
FastSVDD-master\Code\Ellipse\fsvdd\fsvdd_predict.m, 939 , 2015-05-19
FastSVDD-master\Code\Ellipse\fsvdd\fsvdd_train.m, 2849 , 2015-05-19
FastSVDD-master\Code\Ellipse\fsvdd\load_data.m, 499 , 2015-05-19
FastSVDD-master\Code\Ellipse\fsvdd\svkernel_new.m, 2573 , 2015-05-19
FastSVDD-master\Code\Ellipse\fsvdd\svtol.m, 406 , 2015-05-19
FastSVDD-master\Code\Ellipse\fsvdd\test_fsvdd.m, 2788 , 2015-05-19
FastSVDD-master\Code\Ellipse\gen_data.m, 732 , 2015-05-19
FastSVDD-master\Code\Ellipse\svdd, 0 , 2015-05-19
FastSVDD-master\Code\Ellipse\svdd\computeKgm.m, 812 , 2015-05-19
FastSVDD-master\Code\Ellipse\svdd\data.png, 8745 , 2015-05-19
FastSVDD-master\Code\Ellipse\svdd\decn.png, 10336 , 2015-05-19
FastSVDD-master\Code\Ellipse\svdd\ellipse.mat, 6342 , 2015-05-19
FastSVDD-master\Code\Ellipse\svdd\load_data.m, 531 , 2015-05-19
FastSVDD-master\Code\Ellipse\svdd\svdd_predict.m, 1042 , 2015-05-19
FastSVDD-master\Code\Ellipse\svdd\svdd_train.m, 2670 , 2015-05-19
FastSVDD-master\Code\Ellipse\svdd\svkernel_new.m, 2586 , 2015-05-19
FastSVDD-master\Code\Ellipse\svdd\svtol.m, 406 , 2015-05-19
FastSVDD-master\Code\Ellipse\svdd\test_svdd.m, 2609 , 2015-05-19
FastSVDD-master\Code\FisherIris, 0 , 2015-05-19
FastSVDD-master\Code\FisherIris\fsvdd, 0 , 2015-05-19
FastSVDD-master\Code\FisherIris\fsvdd\Results.txt, 1520 , 2015-05-19
FastSVDD-master\Code\FisherIris\fsvdd\computeKgm.m, 596 , 2015-05-19
FastSVDD-master\Code\FisherIris\fsvdd\computeResults.m, 1616 , 2015-05-19
FastSVDD-master\Code\FisherIris\fsvdd\computeResults_fpt.m, 1622 , 2015-05-19
FastSVDD-master\Code\FisherIris\fsvdd\data.mat, 8326 , 2015-05-19
FastSVDD-master\Code\FisherIris\fsvdd\fsvdd_predict.m, 939 , 2015-05-19
FastSVDD-master\Code\FisherIris\fsvdd\fsvdd_train.m, 2849 , 2015-05-19
FastSVDD-master\Code\FisherIris\fsvdd\fsvdd_train_fpt.m, 3419 , 2015-05-19
FastSVDD-master\Code\FisherIris\fsvdd\load_data.m, 3962 , 2015-05-19
FastSVDD-master\Code\FisherIris\fsvdd\svkernel_new.m, 2585 , 2015-05-19
FastSVDD-master\Code\FisherIris\fsvdd\svtol.m, 406 , 2015-05-19
FastSVDD-master\Code\FisherIris\fsvdd\test_fsvdd.m, 1721 , 2015-05-19
FastSVDD-master\Code\FisherIris\fsvdd\test_fsvdd_fpt.m, 1798 , 2015-05-19
FastSVDD-master\Code\FisherIris\mlffnn, 0 , 2015-05-19
FastSVDD-master\Code\FisherIris\mlffnn\load_data.m, 4111 , 2015-05-19
FastSVDD-master\Code\FisherIris\mlffnn\mlffnn.m, 4102 , 2015-05-19
FastSVDD-master\Code\FisherIris\svdd, 0 , 2015-05-19
FastSVDD-master\Code\FisherIris\svdd\Results.txt, 920 , 2015-05-19
FastSVDD-master\Code\FisherIris\svdd\computeKgm.m, 612 , 2015-05-19
FastSVDD-master\Code\FisherIris\svdd\computeResults.m, 1552 , 2015-05-19
FastSVDD-master\Code\FisherIris\svdd\data.mat, 8326 , 2015-05-19
FastSVDD-master\Code\FisherIris\svdd\iris_1.png, 5625 , 2015-05-19
FastSVDD-master\Code\FisherIris\svdd\iris_2.png, 5258 , 2015-05-19
FastSVDD-master\Code\FisherIris\svdd\load_data.m, 3943 , 2015-05-19
FastSVDD-master\Code\FisherIris\svdd\svdd_predict.m, 1042 , 2015-05-19
FastSVDD-master\Code\FisherIris\svdd\svdd_train.m, 3003 , 2015-05-19
FastSVDD-master\Code\FisherIris\svdd\svkernel_new.m, 2586 , 2015-05-19
FastSVDD-master\Code\FisherIris\svdd\svtol.m, 406 , 2015-05-19
FastSVDD-master\Code\FisherIris\svdd\test_svdd.m, 1622 , 2015-05-19
FastSVDD-master\Code\README.txt, 1087 , 2015-05-19
FastSVDD-master\Code\Wine, 0 , 2015-05-19
FastSVDD-master\Code\Wine\fsvdd, 0 , 2015-05-19
FastSVDD-master\Code\Wine\fsvdd\Results.txt, 898 , 2015-05-19
FastSVDD-master\Code\Wine\fsvdd\computeKgm.m, 596 , 2015-05-19
FastSVDD-master\Code\Wine\fsvdd\computeResults.m, 1556 , 2015-05-19
FastSVDD-master\Code\Wine\fsvdd\computeResults_fpt.m, 1583 , 2015-05-19
FastSVDD-master\Code\Wine\fsvdd\fsvdd_predict.m, 939 , 2015-05-19
FastSVDD-master\Code\Wine\fsvdd\fsvdd_train.m, 2855 , 2015-05-19
FastSVDD-master\Code\Wine\fsvdd\fsvdd_train_fpt.m, 3786 , 2015-05-19
FastSVDD-master\Code\Wine\fsvdd\load_data.m, 3271 , 2015-05-19
FastSVDD-master\Code\Wine\fsvdd\svkernel_new.m, 2587 , 2015-05-19
FastSVDD-master\Code\Wine\fsvdd\svtol.m, 406 , 2015-05-19
FastSVDD-master\Code\Wine\fsvdd\test_fsvdd.m, 1880 , 2015-05-19
FastSVDD-master\Code\Wine\fsvdd\test_fsvdd_fpt.m, 1943 , 2015-05-19
FastSVDD-master\Code\Wine\mlffnn, 0 , 2015-05-19
FastSVDD-master\Code\Wine\mlffnn\load_data.m, 3488 , 2015-05-19
FastSVDD-master\Code\Wine\mlffnn\mlffnn.m, 4289 , 2015-05-19
FastSVDD-master\Code\Wine\svdd, 0 , 2015-05-19
FastSVDD-master\Code\Wine\svdd\Results.txt, 621 , 2015-05-19
FastSVDD-master\Code\Wine\svdd\computeKgm.m, 596 , 2015-05-19
FastSVDD-master\Code\Wine\svdd\computeResults.m, 1536 , 2015-05-19
FastSVDD-master\Code\Wine\svdd\data.mat, 29144 , 2015-05-19
FastSVDD-master\Code\Wine\svdd\load_data.m, 3272 , 2015-05-19
FastSVDD-master\Code\Wine\svdd\svdd_predict.m, 1042 , 2015-05-19
FastSVDD-master\Code\Wine\svdd\svdd_train.m, 2718 , 2015-05-19
FastSVDD-master\Code\Wine\svdd\svkernel_new.m, 2585 , 2015-05-19
FastSVDD-master\Code\Wine\svdd\svtol.m, 406 , 2015-05-19
FastSVDD-master\Code\Wine\svdd\test_svdd.m, 1929 , 2015-05-19
FastSVDD-master\Code\overlapping, 0 , 2015-05-19
FastSVDD-master\Code\overlapping\fsvdd, 0 , 2015-05-19
FastSVDD-master\Code\overlapping\fsvdd\Results.txt, 2680 , 2015-05-19
FastSVDD-master\Code\overlapping\fsvdd\computeKgm.m, 612 , 2015-05-19
FastSVDD-master\Code\overlapping\fsvdd\decn_1.png, 16694 , 2015-05-19
FastSVDD-master\Code\overlapping\fsvdd\decn_1_fpt.png, 16633 , 2015-05-19
FastSVDD-master\Code\overlapping\fsvdd\decn_2.png, 16192 , 2015-05-19
FastSVDD-master\Code\overlapping\fsvdd\decn_2_fpt.png, 16237 , 2015-05-19
FastSVDD-master\Code\overlapping\fsvdd\decn_3.png, 15679 , 2015-05-19
FastSVDD-master\Code\overlapping\fsvdd\decn_3_fpt.png, 15699 , 2015-05-19
FastSVDD-master\Code\overlapping\fsvdd\decn_4.png, 15479 , 2015-05-19
FastSVDD-master\Code\overlapping\fsvdd\decn_4_fpt.png, 15444 , 2015-05-19
FastSVDD-master\Code\overlapping\fsvdd\fsvdd_predict.m, 1007 , 2015-05-19
FastSVDD-master\Code\overlapping\fsvdd\fsvdd_train.m, 2931 , 2015-05-19

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • work
    大学期间,matlab学习过程使用过的所有必要的function! 适合初学者!(University during the period, matlab learning process used by all the necessary function! Suitable for beginners!)
    2007-12-12 23:41:25下载
    积分:1
  • ploteye
    绘制眼图的matlab程序,可以用于通信系统中传输质量的监测。(Matlab draw the eye diagram of the procedure can be used in communication systems to monitor the transmission quality.)
    2009-04-07 17:05:53下载
    积分:1
  • possion_me_finnal
    自己写的Possion过程仿真,包括Possion过程的产生和检验。用指数分布叠加产生,用kstest函数检验。(Write your own Possion process simulation, including the production and testing Possion process. Produced by superposition of exponential distribution, with kstest function test.)
    2010-12-27 21:32:55下载
    积分:1
  • Remove_thenoises_using_wavelet_transform
    这是在matlab编程环境下,用小波变换实现的图像去噪处理程序。本程序可以直接加载电脑中的图片而不是使用matlab中自带的图像数据。适合小波变换去噪处理的初学者。(This is a programming environment in matlab, using wavelet transform for image denoising process. The computer program can load images directly instead of using image data that comes with matlab. Wavelet denoising for beginners.)
    2011-01-10 15:28:05下载
    积分:1
  • FS8160
    PLL FS1860 源程序,调试过是OK的,大家可以参考一下.(PLL FS1860 source, debugging off is OK, and everyone can reference.)
    2007-10-02 10:58:10下载
    积分:1
  • MATLABbiancheng
    说明:  对使用matlab编程的基础知识做了详尽的介绍。(Matlab on the use of basic knowledge of programming to do the detail.)
    2009-08-18 00:43:44下载
    积分:1
  • Gearbox-kinematic-modeling
    gearing box kinematic model
    2012-04-04 14:21:44下载
    积分:1
  • power-flow
    POWER FLOW analysis method
    2015-01-19 17:14:39下载
    积分:1
  • file
    armold 变换是数字图像置乱中常用的一种方法。本文给出了armold 变换的matlab源代码,以方便大家的使用。(armold digital image scrambling transformation is commonly used methods. In this paper, armold transform matlab source code to facilitate everyone' s use.)
    2010-05-05 15:53:30下载
    积分:1
  • sar
    合成孔径雷达(SAR)的点目标仿真(附件带代码程序),适合初学者入门用,并解释了每一个语句的作用(Synthetic Aperture Radar (SAR) of the point target emulation (annex with code programs), a detailed description of the program and describes the role of the end of each program)
    2014-11-06 21:33:19下载
    积分:1
  • 696518资源总数
  • 106148会员总数
  • 10今日下载