登录
首页 » matlab » FastSVDD-master

FastSVDD-master

于 2021-03-08 发布
0 158
下载积分: 1 下载次数: 4

代码说明:

说明:  支持向量数据描述(Support Vector Data Description,SVDD)是一种单值分类算法,能够实现目标样本和非目标样本的区分,通常应用于异常检测和故障检测等领域。(Support vector data description (SVDD) is a single valued classification algorithm, which can distinguish target samples from non target samples. It is usually used in anomaly detection and fault detection.)

文件列表:

FastSVDD-master, 0 , 2015-05-19
FastSVDD-master\.gitignore, 27 , 2015-05-19
FastSVDD-master\Code, 0 , 2015-05-19
FastSVDD-master\Code\Ellipse, 0 , 2015-05-19
FastSVDD-master\Code\Ellipse\fsvdd, 0 , 2015-05-19
FastSVDD-master\Code\Ellipse\fsvdd\computeKgm.m, 812 , 2015-05-19
FastSVDD-master\Code\Ellipse\fsvdd\decn.png, 10354 , 2015-05-19
FastSVDD-master\Code\Ellipse\fsvdd\ellipse.mat, 6342 , 2015-05-19
FastSVDD-master\Code\Ellipse\fsvdd\fsvdd_predict.m, 939 , 2015-05-19
FastSVDD-master\Code\Ellipse\fsvdd\fsvdd_train.m, 2849 , 2015-05-19
FastSVDD-master\Code\Ellipse\fsvdd\load_data.m, 499 , 2015-05-19
FastSVDD-master\Code\Ellipse\fsvdd\svkernel_new.m, 2573 , 2015-05-19
FastSVDD-master\Code\Ellipse\fsvdd\svtol.m, 406 , 2015-05-19
FastSVDD-master\Code\Ellipse\fsvdd\test_fsvdd.m, 2788 , 2015-05-19
FastSVDD-master\Code\Ellipse\gen_data.m, 732 , 2015-05-19
FastSVDD-master\Code\Ellipse\svdd, 0 , 2015-05-19
FastSVDD-master\Code\Ellipse\svdd\computeKgm.m, 812 , 2015-05-19
FastSVDD-master\Code\Ellipse\svdd\data.png, 8745 , 2015-05-19
FastSVDD-master\Code\Ellipse\svdd\decn.png, 10336 , 2015-05-19
FastSVDD-master\Code\Ellipse\svdd\ellipse.mat, 6342 , 2015-05-19
FastSVDD-master\Code\Ellipse\svdd\load_data.m, 531 , 2015-05-19
FastSVDD-master\Code\Ellipse\svdd\svdd_predict.m, 1042 , 2015-05-19
FastSVDD-master\Code\Ellipse\svdd\svdd_train.m, 2670 , 2015-05-19
FastSVDD-master\Code\Ellipse\svdd\svkernel_new.m, 2586 , 2015-05-19
FastSVDD-master\Code\Ellipse\svdd\svtol.m, 406 , 2015-05-19
FastSVDD-master\Code\Ellipse\svdd\test_svdd.m, 2609 , 2015-05-19
FastSVDD-master\Code\FisherIris, 0 , 2015-05-19
FastSVDD-master\Code\FisherIris\fsvdd, 0 , 2015-05-19
FastSVDD-master\Code\FisherIris\fsvdd\Results.txt, 1520 , 2015-05-19
FastSVDD-master\Code\FisherIris\fsvdd\computeKgm.m, 596 , 2015-05-19
FastSVDD-master\Code\FisherIris\fsvdd\computeResults.m, 1616 , 2015-05-19
FastSVDD-master\Code\FisherIris\fsvdd\computeResults_fpt.m, 1622 , 2015-05-19
FastSVDD-master\Code\FisherIris\fsvdd\data.mat, 8326 , 2015-05-19
FastSVDD-master\Code\FisherIris\fsvdd\fsvdd_predict.m, 939 , 2015-05-19
FastSVDD-master\Code\FisherIris\fsvdd\fsvdd_train.m, 2849 , 2015-05-19
FastSVDD-master\Code\FisherIris\fsvdd\fsvdd_train_fpt.m, 3419 , 2015-05-19
FastSVDD-master\Code\FisherIris\fsvdd\load_data.m, 3962 , 2015-05-19
FastSVDD-master\Code\FisherIris\fsvdd\svkernel_new.m, 2585 , 2015-05-19
FastSVDD-master\Code\FisherIris\fsvdd\svtol.m, 406 , 2015-05-19
FastSVDD-master\Code\FisherIris\fsvdd\test_fsvdd.m, 1721 , 2015-05-19
FastSVDD-master\Code\FisherIris\fsvdd\test_fsvdd_fpt.m, 1798 , 2015-05-19
FastSVDD-master\Code\FisherIris\mlffnn, 0 , 2015-05-19
FastSVDD-master\Code\FisherIris\mlffnn\load_data.m, 4111 , 2015-05-19
FastSVDD-master\Code\FisherIris\mlffnn\mlffnn.m, 4102 , 2015-05-19
FastSVDD-master\Code\FisherIris\svdd, 0 , 2015-05-19
FastSVDD-master\Code\FisherIris\svdd\Results.txt, 920 , 2015-05-19
FastSVDD-master\Code\FisherIris\svdd\computeKgm.m, 612 , 2015-05-19
FastSVDD-master\Code\FisherIris\svdd\computeResults.m, 1552 , 2015-05-19
FastSVDD-master\Code\FisherIris\svdd\data.mat, 8326 , 2015-05-19
FastSVDD-master\Code\FisherIris\svdd\iris_1.png, 5625 , 2015-05-19
FastSVDD-master\Code\FisherIris\svdd\iris_2.png, 5258 , 2015-05-19
FastSVDD-master\Code\FisherIris\svdd\load_data.m, 3943 , 2015-05-19
FastSVDD-master\Code\FisherIris\svdd\svdd_predict.m, 1042 , 2015-05-19
FastSVDD-master\Code\FisherIris\svdd\svdd_train.m, 3003 , 2015-05-19
FastSVDD-master\Code\FisherIris\svdd\svkernel_new.m, 2586 , 2015-05-19
FastSVDD-master\Code\FisherIris\svdd\svtol.m, 406 , 2015-05-19
FastSVDD-master\Code\FisherIris\svdd\test_svdd.m, 1622 , 2015-05-19
FastSVDD-master\Code\README.txt, 1087 , 2015-05-19
FastSVDD-master\Code\Wine, 0 , 2015-05-19
FastSVDD-master\Code\Wine\fsvdd, 0 , 2015-05-19
FastSVDD-master\Code\Wine\fsvdd\Results.txt, 898 , 2015-05-19
FastSVDD-master\Code\Wine\fsvdd\computeKgm.m, 596 , 2015-05-19
FastSVDD-master\Code\Wine\fsvdd\computeResults.m, 1556 , 2015-05-19
FastSVDD-master\Code\Wine\fsvdd\computeResults_fpt.m, 1583 , 2015-05-19
FastSVDD-master\Code\Wine\fsvdd\fsvdd_predict.m, 939 , 2015-05-19
FastSVDD-master\Code\Wine\fsvdd\fsvdd_train.m, 2855 , 2015-05-19
FastSVDD-master\Code\Wine\fsvdd\fsvdd_train_fpt.m, 3786 , 2015-05-19
FastSVDD-master\Code\Wine\fsvdd\load_data.m, 3271 , 2015-05-19
FastSVDD-master\Code\Wine\fsvdd\svkernel_new.m, 2587 , 2015-05-19
FastSVDD-master\Code\Wine\fsvdd\svtol.m, 406 , 2015-05-19
FastSVDD-master\Code\Wine\fsvdd\test_fsvdd.m, 1880 , 2015-05-19
FastSVDD-master\Code\Wine\fsvdd\test_fsvdd_fpt.m, 1943 , 2015-05-19
FastSVDD-master\Code\Wine\mlffnn, 0 , 2015-05-19
FastSVDD-master\Code\Wine\mlffnn\load_data.m, 3488 , 2015-05-19
FastSVDD-master\Code\Wine\mlffnn\mlffnn.m, 4289 , 2015-05-19
FastSVDD-master\Code\Wine\svdd, 0 , 2015-05-19
FastSVDD-master\Code\Wine\svdd\Results.txt, 621 , 2015-05-19
FastSVDD-master\Code\Wine\svdd\computeKgm.m, 596 , 2015-05-19
FastSVDD-master\Code\Wine\svdd\computeResults.m, 1536 , 2015-05-19
FastSVDD-master\Code\Wine\svdd\data.mat, 29144 , 2015-05-19
FastSVDD-master\Code\Wine\svdd\load_data.m, 3272 , 2015-05-19
FastSVDD-master\Code\Wine\svdd\svdd_predict.m, 1042 , 2015-05-19
FastSVDD-master\Code\Wine\svdd\svdd_train.m, 2718 , 2015-05-19
FastSVDD-master\Code\Wine\svdd\svkernel_new.m, 2585 , 2015-05-19
FastSVDD-master\Code\Wine\svdd\svtol.m, 406 , 2015-05-19
FastSVDD-master\Code\Wine\svdd\test_svdd.m, 1929 , 2015-05-19
FastSVDD-master\Code\overlapping, 0 , 2015-05-19
FastSVDD-master\Code\overlapping\fsvdd, 0 , 2015-05-19
FastSVDD-master\Code\overlapping\fsvdd\Results.txt, 2680 , 2015-05-19
FastSVDD-master\Code\overlapping\fsvdd\computeKgm.m, 612 , 2015-05-19
FastSVDD-master\Code\overlapping\fsvdd\decn_1.png, 16694 , 2015-05-19
FastSVDD-master\Code\overlapping\fsvdd\decn_1_fpt.png, 16633 , 2015-05-19
FastSVDD-master\Code\overlapping\fsvdd\decn_2.png, 16192 , 2015-05-19
FastSVDD-master\Code\overlapping\fsvdd\decn_2_fpt.png, 16237 , 2015-05-19
FastSVDD-master\Code\overlapping\fsvdd\decn_3.png, 15679 , 2015-05-19
FastSVDD-master\Code\overlapping\fsvdd\decn_3_fpt.png, 15699 , 2015-05-19
FastSVDD-master\Code\overlapping\fsvdd\decn_4.png, 15479 , 2015-05-19
FastSVDD-master\Code\overlapping\fsvdd\decn_4_fpt.png, 15444 , 2015-05-19
FastSVDD-master\Code\overlapping\fsvdd\fsvdd_predict.m, 1007 , 2015-05-19
FastSVDD-master\Code\overlapping\fsvdd\fsvdd_train.m, 2931 , 2015-05-19

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • yunkong
    说明:  MATLAB异步电机仿真资料,里面包含很多异步电机资料,简明易懂(MATLAB simulation of induction motor information, which contains information on many induction motors, and easily understandable)
    2008-09-24 19:02:50下载
    积分:1
  • matlab-teaching-materials-
    MATLAB 教学视频(史峰)配套ppt讲义。( MATLAB(Shi—Feng) teaching video supporting ppt lecture notes.)
    2012-04-06 13:44:29下载
    积分:1
  • final_code.m
    Final Code for Reed Solomon
    2014-02-20 00:54:40下载
    积分:1
  • EMD
    这是EMD分解的matlab程序,可以进行imf分解,及求解包络求解(this is EMD program ,it can process imf divide.)
    2014-11-27 21:58:40下载
    积分:1
  • matleb
    数值分析要求:第二题编成命令文件即可,其中阶乘可以单独编成函数文件在命令文件中调用,也可以直接在你所编的命令文件中利用循环语句直接计算; 第四题编成通用的程序,建议编成函数文件。提示:可以把多项式的系数和所需要求解的点设为参数。(Numerical Analysis of requirements: the second title of the command file can be compiled, which can factorial function into a separate file in order to call the document can also be made directly in your document, use the command loop direct calculation into fourth title common procedures, the proposed document into function. Tip: polynomial coefficients can be requested and the required parameters set point solution.)
    2009-04-13 21:53:48下载
    积分:1
  • ARMAandmatlab
    ARMA模型在matlab中的实现,This function provides an ARMA spectral estimate which is maximum entropy satisfying correlation constraint (number of poles)and cepstrum constrains (number of ceros) (The realization of the ARMA model in matlab,This function provides an ARMA spectral estimate which is maximum entropy satisfying correlation constraint (number of poles)and cepstrum constrains (number of ceros) )
    2012-05-22 17:29:44下载
    积分:1
  • xcorr_fft
    用于求取一段时间信号序列的求取自相关函数、功率谱密度(Obtaining autocorrelation function for obtaining a period of a signal sequence, power spectral density)
    2015-03-08 10:57:46下载
    积分:1
  • MATLAB_video_process
    matlab视频处理书籍,详细介绍了matlab下的视频处理(matlab video process)
    2014-01-12 12:05:57下载
    积分:1
  • canchagm
    用matlab实现灰色序列残差预测模型GM(1,1)(Using matlab realize residual sequence gray prediction model GM (1,1))
    2008-05-08 22:21:35下载
    积分:1
  • _9_EE362L_PI_Controller_Spring-2009
    PI controller for boost converter (sinulink)
    2011-06-13 09:23:12下载
    积分:1
  • 696518资源总数
  • 105540会员总数
  • 37今日下载