登录
首页 » matlab » FastSVDD-master

FastSVDD-master

于 2021-03-08 发布
0 167
下载积分: 1 下载次数: 4

代码说明:

说明:  支持向量数据描述(Support Vector Data Description,SVDD)是一种单值分类算法,能够实现目标样本和非目标样本的区分,通常应用于异常检测和故障检测等领域。(Support vector data description (SVDD) is a single valued classification algorithm, which can distinguish target samples from non target samples. It is usually used in anomaly detection and fault detection.)

文件列表:

FastSVDD-master, 0 , 2015-05-19
FastSVDD-master\.gitignore, 27 , 2015-05-19
FastSVDD-master\Code, 0 , 2015-05-19
FastSVDD-master\Code\Ellipse, 0 , 2015-05-19
FastSVDD-master\Code\Ellipse\fsvdd, 0 , 2015-05-19
FastSVDD-master\Code\Ellipse\fsvdd\computeKgm.m, 812 , 2015-05-19
FastSVDD-master\Code\Ellipse\fsvdd\decn.png, 10354 , 2015-05-19
FastSVDD-master\Code\Ellipse\fsvdd\ellipse.mat, 6342 , 2015-05-19
FastSVDD-master\Code\Ellipse\fsvdd\fsvdd_predict.m, 939 , 2015-05-19
FastSVDD-master\Code\Ellipse\fsvdd\fsvdd_train.m, 2849 , 2015-05-19
FastSVDD-master\Code\Ellipse\fsvdd\load_data.m, 499 , 2015-05-19
FastSVDD-master\Code\Ellipse\fsvdd\svkernel_new.m, 2573 , 2015-05-19
FastSVDD-master\Code\Ellipse\fsvdd\svtol.m, 406 , 2015-05-19
FastSVDD-master\Code\Ellipse\fsvdd\test_fsvdd.m, 2788 , 2015-05-19
FastSVDD-master\Code\Ellipse\gen_data.m, 732 , 2015-05-19
FastSVDD-master\Code\Ellipse\svdd, 0 , 2015-05-19
FastSVDD-master\Code\Ellipse\svdd\computeKgm.m, 812 , 2015-05-19
FastSVDD-master\Code\Ellipse\svdd\data.png, 8745 , 2015-05-19
FastSVDD-master\Code\Ellipse\svdd\decn.png, 10336 , 2015-05-19
FastSVDD-master\Code\Ellipse\svdd\ellipse.mat, 6342 , 2015-05-19
FastSVDD-master\Code\Ellipse\svdd\load_data.m, 531 , 2015-05-19
FastSVDD-master\Code\Ellipse\svdd\svdd_predict.m, 1042 , 2015-05-19
FastSVDD-master\Code\Ellipse\svdd\svdd_train.m, 2670 , 2015-05-19
FastSVDD-master\Code\Ellipse\svdd\svkernel_new.m, 2586 , 2015-05-19
FastSVDD-master\Code\Ellipse\svdd\svtol.m, 406 , 2015-05-19
FastSVDD-master\Code\Ellipse\svdd\test_svdd.m, 2609 , 2015-05-19
FastSVDD-master\Code\FisherIris, 0 , 2015-05-19
FastSVDD-master\Code\FisherIris\fsvdd, 0 , 2015-05-19
FastSVDD-master\Code\FisherIris\fsvdd\Results.txt, 1520 , 2015-05-19
FastSVDD-master\Code\FisherIris\fsvdd\computeKgm.m, 596 , 2015-05-19
FastSVDD-master\Code\FisherIris\fsvdd\computeResults.m, 1616 , 2015-05-19
FastSVDD-master\Code\FisherIris\fsvdd\computeResults_fpt.m, 1622 , 2015-05-19
FastSVDD-master\Code\FisherIris\fsvdd\data.mat, 8326 , 2015-05-19
FastSVDD-master\Code\FisherIris\fsvdd\fsvdd_predict.m, 939 , 2015-05-19
FastSVDD-master\Code\FisherIris\fsvdd\fsvdd_train.m, 2849 , 2015-05-19
FastSVDD-master\Code\FisherIris\fsvdd\fsvdd_train_fpt.m, 3419 , 2015-05-19
FastSVDD-master\Code\FisherIris\fsvdd\load_data.m, 3962 , 2015-05-19
FastSVDD-master\Code\FisherIris\fsvdd\svkernel_new.m, 2585 , 2015-05-19
FastSVDD-master\Code\FisherIris\fsvdd\svtol.m, 406 , 2015-05-19
FastSVDD-master\Code\FisherIris\fsvdd\test_fsvdd.m, 1721 , 2015-05-19
FastSVDD-master\Code\FisherIris\fsvdd\test_fsvdd_fpt.m, 1798 , 2015-05-19
FastSVDD-master\Code\FisherIris\mlffnn, 0 , 2015-05-19
FastSVDD-master\Code\FisherIris\mlffnn\load_data.m, 4111 , 2015-05-19
FastSVDD-master\Code\FisherIris\mlffnn\mlffnn.m, 4102 , 2015-05-19
FastSVDD-master\Code\FisherIris\svdd, 0 , 2015-05-19
FastSVDD-master\Code\FisherIris\svdd\Results.txt, 920 , 2015-05-19
FastSVDD-master\Code\FisherIris\svdd\computeKgm.m, 612 , 2015-05-19
FastSVDD-master\Code\FisherIris\svdd\computeResults.m, 1552 , 2015-05-19
FastSVDD-master\Code\FisherIris\svdd\data.mat, 8326 , 2015-05-19
FastSVDD-master\Code\FisherIris\svdd\iris_1.png, 5625 , 2015-05-19
FastSVDD-master\Code\FisherIris\svdd\iris_2.png, 5258 , 2015-05-19
FastSVDD-master\Code\FisherIris\svdd\load_data.m, 3943 , 2015-05-19
FastSVDD-master\Code\FisherIris\svdd\svdd_predict.m, 1042 , 2015-05-19
FastSVDD-master\Code\FisherIris\svdd\svdd_train.m, 3003 , 2015-05-19
FastSVDD-master\Code\FisherIris\svdd\svkernel_new.m, 2586 , 2015-05-19
FastSVDD-master\Code\FisherIris\svdd\svtol.m, 406 , 2015-05-19
FastSVDD-master\Code\FisherIris\svdd\test_svdd.m, 1622 , 2015-05-19
FastSVDD-master\Code\README.txt, 1087 , 2015-05-19
FastSVDD-master\Code\Wine, 0 , 2015-05-19
FastSVDD-master\Code\Wine\fsvdd, 0 , 2015-05-19
FastSVDD-master\Code\Wine\fsvdd\Results.txt, 898 , 2015-05-19
FastSVDD-master\Code\Wine\fsvdd\computeKgm.m, 596 , 2015-05-19
FastSVDD-master\Code\Wine\fsvdd\computeResults.m, 1556 , 2015-05-19
FastSVDD-master\Code\Wine\fsvdd\computeResults_fpt.m, 1583 , 2015-05-19
FastSVDD-master\Code\Wine\fsvdd\fsvdd_predict.m, 939 , 2015-05-19
FastSVDD-master\Code\Wine\fsvdd\fsvdd_train.m, 2855 , 2015-05-19
FastSVDD-master\Code\Wine\fsvdd\fsvdd_train_fpt.m, 3786 , 2015-05-19
FastSVDD-master\Code\Wine\fsvdd\load_data.m, 3271 , 2015-05-19
FastSVDD-master\Code\Wine\fsvdd\svkernel_new.m, 2587 , 2015-05-19
FastSVDD-master\Code\Wine\fsvdd\svtol.m, 406 , 2015-05-19
FastSVDD-master\Code\Wine\fsvdd\test_fsvdd.m, 1880 , 2015-05-19
FastSVDD-master\Code\Wine\fsvdd\test_fsvdd_fpt.m, 1943 , 2015-05-19
FastSVDD-master\Code\Wine\mlffnn, 0 , 2015-05-19
FastSVDD-master\Code\Wine\mlffnn\load_data.m, 3488 , 2015-05-19
FastSVDD-master\Code\Wine\mlffnn\mlffnn.m, 4289 , 2015-05-19
FastSVDD-master\Code\Wine\svdd, 0 , 2015-05-19
FastSVDD-master\Code\Wine\svdd\Results.txt, 621 , 2015-05-19
FastSVDD-master\Code\Wine\svdd\computeKgm.m, 596 , 2015-05-19
FastSVDD-master\Code\Wine\svdd\computeResults.m, 1536 , 2015-05-19
FastSVDD-master\Code\Wine\svdd\data.mat, 29144 , 2015-05-19
FastSVDD-master\Code\Wine\svdd\load_data.m, 3272 , 2015-05-19
FastSVDD-master\Code\Wine\svdd\svdd_predict.m, 1042 , 2015-05-19
FastSVDD-master\Code\Wine\svdd\svdd_train.m, 2718 , 2015-05-19
FastSVDD-master\Code\Wine\svdd\svkernel_new.m, 2585 , 2015-05-19
FastSVDD-master\Code\Wine\svdd\svtol.m, 406 , 2015-05-19
FastSVDD-master\Code\Wine\svdd\test_svdd.m, 1929 , 2015-05-19
FastSVDD-master\Code\overlapping, 0 , 2015-05-19
FastSVDD-master\Code\overlapping\fsvdd, 0 , 2015-05-19
FastSVDD-master\Code\overlapping\fsvdd\Results.txt, 2680 , 2015-05-19
FastSVDD-master\Code\overlapping\fsvdd\computeKgm.m, 612 , 2015-05-19
FastSVDD-master\Code\overlapping\fsvdd\decn_1.png, 16694 , 2015-05-19
FastSVDD-master\Code\overlapping\fsvdd\decn_1_fpt.png, 16633 , 2015-05-19
FastSVDD-master\Code\overlapping\fsvdd\decn_2.png, 16192 , 2015-05-19
FastSVDD-master\Code\overlapping\fsvdd\decn_2_fpt.png, 16237 , 2015-05-19
FastSVDD-master\Code\overlapping\fsvdd\decn_3.png, 15679 , 2015-05-19
FastSVDD-master\Code\overlapping\fsvdd\decn_3_fpt.png, 15699 , 2015-05-19
FastSVDD-master\Code\overlapping\fsvdd\decn_4.png, 15479 , 2015-05-19
FastSVDD-master\Code\overlapping\fsvdd\decn_4_fpt.png, 15444 , 2015-05-19
FastSVDD-master\Code\overlapping\fsvdd\fsvdd_predict.m, 1007 , 2015-05-19
FastSVDD-master\Code\overlapping\fsvdd\fsvdd_train.m, 2931 , 2015-05-19

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • calibseq
    基于二维平面模版的黑色光点图像摄像机定标中的程序(Template based on two-dimensional image of the black spot in the camera calibration procedure)
    2011-09-18 22:00:30下载
    积分:1
  • RBF-neural-network
    用四元十字阵做被动声定位算法设计,现在是用matlab神经网络工具箱构建RBF神经网络然后仿真显示图形(With a four-element Array do passive acoustic localization algorithm design, now using matlab neural network toolbox and then build on RBF neural network simulation display graphics)
    2013-10-12 14:31:20下载
    积分:1
  • RBF_Classification_Approximation
    RBF Classification And Approximation in Matlab
    2014-01-24 21:56:27下载
    积分:1
  • GA
    说明:  用Matlab编写的基本遗传算法程序,适合于初学者(Prepared using Matlab basic genetic algorithm, suitable for beginners)
    2011-08-19 22:15:04下载
    积分:1
  • ins2
    四元数姿态解算程序,很适合初学者。。。。。。。。。。(compute )
    2013-02-28 23:46:55下载
    积分:1
  • Design-of-a-Nonlinear-PID-Neural-Trajectory-Track
    Design of a Nonlinear PID Neural Trajectory Tracking Controller for Mobile Robot based on Optimization Algorithm
    2015-01-06 03:40:53下载
    积分:1
  • Fuzzy-k--clustering
    模糊K均值聚类算法的matlab程序,很实用,很有针对性。(K fuzzy means clustering algorithm matlab procedures, very useful and very targeted.)
    2015-08-21 19:30:52下载
    积分:1
  • ICP
    说明:  给定10帧点云,利用ICP的方法估计出机器人在这10帧的轨迹,并实现局部点云地图的生成(Given 10 frames of point clouds, the trajectory of the robot in these 10 frames is estimated by ICP method, and the local point cloud map is generated)
    2021-03-11 08:38:55下载
    积分:1
  • HoKoshyap
    Ho-Koshyap : Linear Discriminants
    2012-05-19 05:49:48下载
    积分:1
  • GA-programs
    genetic algorithm tool box
    2013-04-15 05:17:19下载
    积分:1
  • 696518资源总数
  • 105877会员总数
  • 14今日下载