登录
首页 » matlab » DeepLearnToolbox-master

DeepLearnToolbox-master

于 2021-03-21 发布
0 356
下载积分: 1 下载次数: 8

代码说明:

说明:  该工具包提供了一个用于通过算法、预训练模型和应用程序来设计和实现深度神经网络的框架。您可以使用卷积神经网络(ConvNet、CNN)和长短期记忆 (LSTM) 网络对图像、时序和文本数据执行分类和回归。应用程序和绘图可帮助您可视化激活值、编辑网络架构和监控训练进度。(The toolbox provides a framework for designing and implementing deep neural networks through algorithms, pre training models and applications. You can use convolutional neural networks (convnet, CNN) and long and short term memory (LSTM) networks to perform classification and regression on image, temporal, and text data. Applications and graphics help you visualize activation values, edit network architecture, and monitor training progress.)

文件列表:

DeepLearnToolbox-master, 0 , 2021-03-06
DeepLearnToolbox-master\.travis.yml, 249 , 2015-12-01
DeepLearnToolbox-master\CAE, 0 , 2021-03-06
DeepLearnToolbox-master\CAE\caeapplygrads.m, 1219 , 2015-12-01
DeepLearnToolbox-master\CAE\caebbp.m, 917 , 2015-12-01
DeepLearnToolbox-master\CAE\caebp.m, 1011 , 2015-12-01
DeepLearnToolbox-master\CAE\caedown.m, 259 , 2015-12-01
DeepLearnToolbox-master\CAE\caeexamples.m, 754 , 2015-12-01
DeepLearnToolbox-master\CAE\caenumgradcheck.m, 3618 , 2015-12-01
DeepLearnToolbox-master\CAE\caesdlm.m, 845 , 2015-12-01
DeepLearnToolbox-master\CAE\caetrain.m, 1148 , 2015-12-01
DeepLearnToolbox-master\CAE\caeup.m, 489 , 2015-12-01
DeepLearnToolbox-master\CAE\max3d.m, 173 , 2015-12-01
DeepLearnToolbox-master\CAE\scaesetup.m, 1937 , 2015-12-01
DeepLearnToolbox-master\CAE\scaetrain.m, 270 , 2015-12-01
DeepLearnToolbox-master\CNN, 0 , 2021-03-06
DeepLearnToolbox-master\CNN\cnnapplygrads.m, 575 , 2015-12-01
DeepLearnToolbox-master\CNN\cnnbp.m, 2141 , 2015-12-01
DeepLearnToolbox-master\CNN\cnnff.m, 1774 , 2015-12-01
DeepLearnToolbox-master\CNN\cnnnumgradcheck.m, 3430 , 2015-12-01
DeepLearnToolbox-master\CNN\cnnsetup.m, 2020 , 2015-12-01
DeepLearnToolbox-master\CNN\cnntest.m, 193 , 2015-12-01
DeepLearnToolbox-master\CNN\cnntrain.m, 845 , 2015-12-01
DeepLearnToolbox-master\CNN\test_example_CNN.m, 981 , 2015-12-01
DeepLearnToolbox-master\CONTRIBUTING.md, 544 , 2015-12-01
DeepLearnToolbox-master\DBN, 0 , 2021-03-06
DeepLearnToolbox-master\DBN\dbnsetup.m, 557 , 2015-12-01
DeepLearnToolbox-master\DBN\dbntrain.m, 232 , 2015-12-01
DeepLearnToolbox-master\DBN\dbnunfoldtonn.m, 425 , 2015-12-01
DeepLearnToolbox-master\DBN\rbmdown.m, 90 , 2015-12-01
DeepLearnToolbox-master\DBN\rbmtrain.m, 1401 , 2015-12-01
DeepLearnToolbox-master\DBN\rbmup.m, 89 , 2015-12-01
DeepLearnToolbox-master\LICENSE, 1313 , 2015-12-01
DeepLearnToolbox-master\NN, 0 , 2021-03-06
DeepLearnToolbox-master\NN\nnapplygrads.m, 628 , 2015-12-01
DeepLearnToolbox-master\NN\nnbp.m, 1638 , 2015-12-01
DeepLearnToolbox-master\NN\nnchecknumgrad.m, 704 , 2015-12-01
DeepLearnToolbox-master\NN\nneval.m, 811 , 2015-12-01
DeepLearnToolbox-master\NN\nnff.m, 1849 , 2015-12-01
DeepLearnToolbox-master\NN\nnpredict.m, 192 , 2015-12-01
DeepLearnToolbox-master\NN\nnsetup.m, 1844 , 2015-12-01
DeepLearnToolbox-master\NN\nntest.m, 184 , 2015-12-01
DeepLearnToolbox-master\NN\nntrain.m, 2414 , 2015-12-01
DeepLearnToolbox-master\NN\nnupdatefigures.m, 1858 , 2015-12-01
DeepLearnToolbox-master\README.md, 8861 , 2015-12-01
DeepLearnToolbox-master\README_header.md, 2244 , 2015-12-01
DeepLearnToolbox-master\REFS.md, 950 , 2015-12-01
DeepLearnToolbox-master\SAE, 0 , 2021-03-06
DeepLearnToolbox-master\SAE\saesetup.m, 132 , 2015-12-01
DeepLearnToolbox-master\SAE\saetrain.m, 308 , 2015-12-01
DeepLearnToolbox-master\create_readme.sh, 744 , 2015-12-01
DeepLearnToolbox-master\data, 0 , 2021-03-06
DeepLearnToolbox-master\data\mnist_uint8.mat, 14735220 , 2015-12-01
DeepLearnToolbox-master\tests, 0 , 2021-03-06
DeepLearnToolbox-master\tests\runalltests.m, 165 , 2015-12-01
DeepLearnToolbox-master\tests\test_cnn_gradients_are_numerically_correct.m, 552 , 2015-12-01
DeepLearnToolbox-master\tests\test_example_CNN.m, 981 , 2015-12-01
DeepLearnToolbox-master\tests\test_example_DBN.m, 1031 , 2015-12-01
DeepLearnToolbox-master\tests\test_example_NN.m, 3247 , 2015-12-01
DeepLearnToolbox-master\tests\test_example_SAE.m, 934 , 2015-12-01
DeepLearnToolbox-master\tests\test_nn_gradients_are_numerically_correct.m, 749 , 2015-12-01
DeepLearnToolbox-master\util, 0 , 2021-03-06
DeepLearnToolbox-master\util\allcomb.m, 2618 , 2015-12-01
DeepLearnToolbox-master\util\expand.m, 1958 , 2015-12-01
DeepLearnToolbox-master\util\flicker.m, 208 , 2015-12-01
DeepLearnToolbox-master\util\flipall.m, 80 , 2015-12-01
DeepLearnToolbox-master\util\fliplrf.m, 543 , 2015-12-01
DeepLearnToolbox-master\util\flipudf.m, 576 , 2015-12-01
DeepLearnToolbox-master\util\im2patches.m, 313 , 2015-12-01
DeepLearnToolbox-master\util\isOctave.m, 108 , 2015-12-01
DeepLearnToolbox-master\util\makeLMfilters.m, 1895 , 2015-12-01
DeepLearnToolbox-master\util\myOctaveVersion.m, 169 , 2015-12-01
DeepLearnToolbox-master\util\normalize.m, 97 , 2015-12-01
DeepLearnToolbox-master\util\patches2im.m, 242 , 2015-12-01
DeepLearnToolbox-master\util\randcorr.m, 283 , 2015-12-01
DeepLearnToolbox-master\util\randp.m, 2083 , 2015-12-01
DeepLearnToolbox-master\util\rnd.m, 49 , 2015-12-01
DeepLearnToolbox-master\util\sigm.m, 48 , 2015-12-01
DeepLearnToolbox-master\util\sigmrnd.m, 126 , 2015-12-01
DeepLearnToolbox-master\util\softmax.m, 256 , 2015-12-01
DeepLearnToolbox-master\util\tanh_opt.m, 54 , 2015-12-01
DeepLearnToolbox-master\util\visualize.m, 1072 , 2015-12-01
DeepLearnToolbox-master\util\whiten.m, 183 , 2015-12-01
DeepLearnToolbox-master\util\zscore.m, 137 , 2015-12-01

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • denoise
    I developed an algorithm for using local ICA in denoising multidimensional data. It uses delay embedded version of the data, clustering and ICA for the separation between data and noise. (I developed an algorithm for using local ICA in denoising multidimensional data. It uses delay embedded version of the data, clustering and ICA for the separation between data and noise.)
    2008-04-25 15:20:07下载
    积分:1
  • isentropic_vortex
    matlab环境下编写的求解等熵涡问题,属于CFD入门级代码(matlab environment prepared isentropic vortex problem solving, is the entry-level CFD code)
    2020-12-08 19:29:20下载
    积分:1
  • 1
    说明:  mppt with mrac system
    2014-01-27 20:48:11下载
    积分:1
  • drtoolbox
    降维工具箱,包含主元分析(PCA),核主元分析(KPCA)等。(Dimensionality reduction kit, including principal component analysis (PCA), Kernel Principal Component Analysis (KPCA) and so on.)
    2011-09-15 16:08:54下载
    积分:1
  • MATLAB
    应用MATLAB语言处理数字信号与数字图像,里面 有matlab调用c的方法(Application of MATLAB language processing digital signal with the digital image, which has matlab call method c)
    2008-03-12 09:45:44下载
    积分:1
  • khodam_music2D
    it is music algurithm for 2d doa estimation
    2012-05-13 15:20:12下载
    积分:1
  • lifted_ILC
    How to implement Itreativ Learning Control(ILC) on a refrigerator.
    2013-03-25 18:45:50下载
    积分:1
  • CGMethod
    该方法给出了一个CG算法求对称正定矩阵的线性方程的解,要求给出矩阵A、向量b和一个探测向量x0。(This method gives a CG algorithm for linear equations of symmetric positive definite matrix, requiring to give a matrix A, a vector b and a probe vector x0.)
    2013-11-24 17:50:31下载
    积分:1
  • Plan-Position-Indicator-(PPI)
    When scanning in PPI mode, the radar holds its elevation angle constant but varies its azimuth angle. The returns can then be mapped on a horizontal plane. If the radar rotates through 360 degrees, the scan is called a "surveillance scan". If the radar rotates through less than 360 degrees, the scan is called a "sector scan".
    2011-12-17 02:36:18下载
    积分:1
  • MATLAB
    matlab基础与应用教程,ppt版,阅读方便,介绍详尽。(Basic and Applied tutorial matlab)
    2010-12-07 11:24:10下载
    积分:1
  • 696518资源总数
  • 106222会员总数
  • 14今日下载