登录
首页 » matlab » LSSVM预测(划分好样本集)

LSSVM预测(划分好样本集)

于 2021-03-22 发布
0 247
下载积分: 1 下载次数: 11

代码说明:

说明:  使用最小二乘支持向量机对数据集进行回归预测的程序(The program of regression prediction for data set using least squares support vector machine)

文件列表:

LSSVM预测(划分好样本集)\LSSVM_main_rand.m, 1407 , 2020-11-26
LSSVM预测(划分好样本集)\test.xlsx, 46175 , 2020-10-21
LSSVM预测(划分好样本集)\train.xlsx, 83949 , 2020-10-21
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\AFEm.m, 3453 , 2011-06-29
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\bay_errorbar.m, 5785 , 2003-02-21
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\bay_initlssvm.m, 2003 , 2003-02-21
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\bay_lssvm.m, 10345 , 2003-02-21
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\bay_lssvmARD.m, 8187 , 2003-02-21
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\bay_modoutClass.m, 9358 , 2003-02-21
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\bay_optimize.m, 5844 , 2011-07-06
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\bay_rr.m, 4312 , 2009-10-27
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\bitreverse32.m, 1479 , 2010-10-18
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\changelssvm.m, 5576 , 2010-05-11
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\cilssvm.m, 4751 , 2011-08-11
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\code.m, 4245 , 2003-02-21
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\codedist_bay.m, 2118 , 2003-02-21
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\codedist_hamming.m, 756 , 2003-02-21
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\codedist_loss.m, 2018 , 2003-02-21
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\codelssvm.m, 4126 , 2009-11-26
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\code_ECOC.m, 5197 , 2003-02-21
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\code_MOC.m, 550 , 2003-02-21
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\code_OneVsAll.m, 364 , 2003-02-21
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\code_OneVsOne.m, 579 , 2009-11-26
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\crossvalidate.m, 5822 , 2011-08-15
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\crossvalidatelssvm.m, 3958 , 2011-08-15
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\csa.m, 3188 , 2011-06-29
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\CV-SVM-model.mat, 3587 , 2017-04-10
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\democlass.m, 3461 , 2010-05-11
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\democonfint.m, 2147 , 2011-07-29
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\demofun.m, 3972 , 2010-05-11
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\demomodel.m, 4772 , 2010-05-11
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\demomulticlass.m, 2299 , 2010-09-15
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\demo_fixedclass.m, 2251 , 2010-05-11
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\demo_fixedsize.m, 3233 , 2010-05-11
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\demo_yinyang.m, 3447 , 2010-05-11
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\denoise_kpca.m, 3598 , 2010-05-11
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\eign.m, 3787 , 2010-05-11
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\feihuicvsvmregress.m, 7054 , 2016-11-16
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\gcrossvalidate.m, 3302 , 2010-08-18
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\gcrossvalidatelssvm.m, 2092 , 2011-06-29
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\gridsearch.m, 6927 , 2009-02-12
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\initlssvm.m, 3327 , 2010-09-16
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\kentropy.m, 2206 , 2003-02-21
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\kernel_matrix.m, 3569 , 2011-08-11
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\kernel_matrix2.m, 795 , 2011-08-11
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\kpca.m, 6137 , 2010-06-08
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\latentlssvm.m, 2398 , 2003-02-21
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\latticeseq_b2.m, 5836 , 2010-10-18
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\leaveoneout.m, 3667 , 2010-09-15
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\leaveoneoutlssvm.m, 2408 , 2011-06-29
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\linesearch.m, 3758 , 2003-02-21
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\linf.m, 313 , 2003-02-21
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\lin_kernel.m, 531 , 2010-05-11
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\lssvm.m, 1762 , 2010-09-15
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\lssvmMATLAB.m, 2082 , 2010-01-13
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\mae.m, 281 , 2011-07-26
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\medae.m, 311 , 2003-02-21
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\misclass.m, 693 , 2003-02-21
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\MLP_kernel.m, 608 , 2003-02-21
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\mse.m, 285 , 2010-09-06
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\plotlssvm.m, 9963 , 2010-09-20
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\poly_kernel.m, 623 , 2010-06-08
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\postlssvm.m, 4838 , 2003-02-21
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\predict.m, 3485 , 2003-02-21
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\predlssvm.m, 5303 , 2011-02-07
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\preimage_rbf.m, 4452 , 2010-05-11
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\prelssvm.m, 6319 , 2011-06-29
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\progress.m, 1148 , 2011-06-29
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\range.m, 173 , 2010-05-11
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\RBF_kernel.m, 1105 , 2010-05-11
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\rcrossvalidate.m, 5945 , 2010-09-16
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\rcrossvalidatelssvm.m, 4155 , 2011-06-29
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\ridgeregress.m, 1436 , 2003-02-21
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\ripley.mat, 4100 , 2010-04-28
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\robustlssvm.m, 2145 , 2011-06-29
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\roc.m, 7496 , 2010-09-15
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\rsimplex.m, 9916 , 2011-02-07
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\simann.m, 5845 , 2010-09-20
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\simlssvm.m, 6421 , 2010-09-20
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\simplex.m, 9816 , 2011-02-07
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\smootherlssvm.m, 1142 , 2011-06-29
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\svmtrain.m, 24753 , 2017-10-14
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\tbform.m, 3210 , 2011-02-07
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\trainlssvm.m, 8705 , 2011-02-07
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\trimmedmse.m, 1711 , 2003-02-21
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\tunelssvm.m, 22683 , 2011-06-29
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\weightingscheme.m, 794 , 2010-09-15
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\windowize.m, 1937 , 2003-02-21
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\windowizeNARX.m, 1832 , 2003-02-21
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱\~$LSSVM.docx, 162 , 2017-04-10
LSSVM预测(划分好样本集)\最小二乘支持向量机工具箱, 0 , 2020-07-06
LSSVM预测(划分好样本集), 0 , 2020-11-26

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • Information_within_the_MATLAB_software_training_pp
    MATLAB软件训练内部资料pptInformation within the MATLAB software training ppt(MATLAB software training within the information pptInformation within the MATLAB software training ppt)
    2010-08-02 14:22:46下载
    积分:1
  • DCT
    code for dct for image processing
    2009-04-09 17:53:40下载
    积分:1
  • AntSystem
    一个较好的蚁群MATLAB程序,附地图。(In this M-file, the implemention of ACO Algorithm is given with the support of reference papers listed. You can easily use it as following command to see the pictures of result and the iterative playing course.)
    2009-05-17 11:47:01下载
    积分:1
  • rayleigh
    it is rayleigh fading channel coding
    2009-12-12 21:22:21下载
    积分:1
  • particle
    这个文件为粒子滤波算法的matlab源代码程序。(Particle filter)
    2013-01-08 15:30:25下载
    积分:1
  • rscore
    数据标准化处理函数,输入待处理矩阵,参数dim默认或取1,对列进行标准化处理,dim取2对行处理(Standardized data processing functions, input matrix to be processed, the default parameters, or to take a dim, standardization of columns, dim to take two pairs of line processing)
    2011-09-28 18:46:32下载
    积分:1
  • Easy_PS
    用matlab实现的一个图像处理的简易Photoshop,主函数名为:Easy_DIP_byCmQ.m将整个解压,设为工作目录即可运行(含GUI)。包含图1形空间点变换,2图像空间模块变换,3滤波,4形态处理,5图像检测和分割,6傅里叶变换,7图像剪切和缩放等功能。(Using matlab to achieve a simple Photoshop image processing, the main function called: Easy_DIP_byCmQ.m entire decompression, the working directory is set to run (including GUI). Figure 1 contains a shaped spatial point conversion, two image space module transform, 3 filter, 4 forms processing, image detection and segmentation 5, 6 Fourier transform, 7 image cropping and scaling functions.)
    2015-01-03 10:08:24下载
    积分:1
  • Intelligent-control
    智能控制理论的各种算法及其应用,第一章为引言部分,概略控制理论和技术的发展、应用、复杂性等,对各章内容做一个大概的介绍;第二章介绍模糊逻辑基础,包括各种模糊基础模糊语言等;第三章主要讲模糊控制的概念、应用、范围和各种参数等;第四章介绍神经元网络的基本理论、神经网络基本模型等;第五章针对第四章的神经网络模型,提出了神经网络控制办法及其目的和各种模型;第六章讲了遗传算法,包括基本遗传算法,GA的实现技术等。本材料为东南大学和南京航空航天大学各相关工科专业的指导教材,为绝大多数老师所指定。(Various algorithms for intelligent control theory and its applications, the first chapter is an introduction part, the schematic control theory and technology development, application, complexity, do a general introduction to the contents of each chapter second chapter introduces the fuzzy logic base, blur the basis of fuzzy language Chapter the main stresses the concept of fuzzy control, application range and variety of parameters fourth chapter describes the basic theory of neural network, neural network model, etc. Chapter V for the first The four chapters of the neural network model, the proposed neural network control approach and its purpose, and a variety of models sixth chapter genetic algorithms, including the basic genetic algorithm, GA implementation techniques. This material is Southeast University and Nanjing University of Aeronautics and Astronautics and the related engineering guidance materials specified for the vast majority of teachers.)
    2013-04-11 10:32:35下载
    积分:1
  • Water_Leak_Detection
    基于相关算法检测地下管路的漏水点:分别用仪器测量漏水处漏水的声音,两个测井所测得的漏水声音两条波形相似但交错一段时间.(Based algorithm to detect underground pipeline leakage points)
    2013-05-15 19:57:35下载
    积分:1
  • acdc
    联合对角化方法,用于对多个矩阵同时进行联合对角化,主要用处是盲源分离。(joint diagonalization method for the same time on a number of joint matrix diagonalization, the main use is Blind Source Separation.)
    2006-07-01 13:52:01下载
    积分:1
  • 696518资源总数
  • 105877会员总数
  • 14今日下载