登录
首页 » matlab » Gaussian Process Regression

Gaussian Process Regression

于 2021-05-13 发布
0 301
下载积分: 1 下载次数: 19

代码说明:

说明:  贝叶斯网络改进LSTM,实现预测,比较好的算法(Bayesian network to improve LSTM, to achieve prediction, a better algorithm)

文件列表:

data, 0 , 2019-10-16
data\data_1.mat, 172953 , 2019-09-05
data\data_2.mat, 4660 , 2019-09-05
demo_1.m, 1209 , 2019-09-05
demo_2.m, 1248 , 2019-09-05
func, 0 , 2019-10-16
func\plotResult.m, 800 , 2019-09-04
Gaussian Processes for Regression - A Quick Introduction.pdf, 321181 , 2019-09-04
gpml-matlab-v4.2-2018-06-11, 0 , 2019-10-16
gpml-matlab-v4.2-2018-06-11\.octaverc, 8 , 2010-07-23
gpml-matlab-v4.2-2018-06-11\Copyright, 1837 , 2018-06-15
gpml-matlab-v4.2-2018-06-11\cov, 0 , 2019-10-16
gpml-matlab-v4.2-2018-06-11\cov\apx.m, 39152 , 2018-06-15
gpml-matlab-v4.2-2018-06-11\cov\apxGrid.m, 38429 , 2018-06-15
gpml-matlab-v4.2-2018-06-11\cov\apxSparse.m, 2915 , 2017-11-26
gpml-matlab-v4.2-2018-06-11\cov\apxState.m, 20647 , 2018-06-15
gpml-matlab-v4.2-2018-06-11\cov\covADD.m, 4141 , 2017-11-26
gpml-matlab-v4.2-2018-06-11\cov\covConst.m, 533 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covCos.m, 1642 , 2017-11-26
gpml-matlab-v4.2-2018-06-11\cov\covDiscrete.m, 2444 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covDot.m, 4125 , 2017-11-26
gpml-matlab-v4.2-2018-06-11\cov\covEye.m, 1506 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covFBM.m, 2480 , 2017-11-26
gpml-matlab-v4.2-2018-06-11\cov\covGabor.m, 2950 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covGaborard.m, 862 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covGaboriso.m, 747 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covGE.m, 1186 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covLIN.m, 878 , 2017-11-26
gpml-matlab-v4.2-2018-06-11\cov\covLINard.m, 718 , 2017-11-26
gpml-matlab-v4.2-2018-06-11\cov\covLINiso.m, 592 , 2017-11-26
gpml-matlab-v4.2-2018-06-11\cov\covLINone.m, 1478 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covMaha.m, 8278 , 2017-11-26
gpml-matlab-v4.2-2018-06-11\cov\covMask.m, 2077 , 2017-11-26
gpml-matlab-v4.2-2018-06-11\cov\covMatern.m, 3060 , 2018-06-15
gpml-matlab-v4.2-2018-06-11\cov\covMaternard.m, 992 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covMaterniso.m, 843 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covNNone.m, 2181 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covNoise.m, 808 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covOne.m, 1112 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covOU.m, 3690 , 2017-11-26
gpml-matlab-v4.2-2018-06-11\cov\covPER.m, 2825 , 2018-06-15
gpml-matlab-v4.2-2018-06-11\cov\covPERard.m, 707 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covPeriodic.m, 1834 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covPeriodicNoDC.m, 4121 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covPERiso.m, 653 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covPoly.m, 1728 , 2017-11-26
gpml-matlab-v4.2-2018-06-11\cov\covPP.m, 1920 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covPPard.m, 940 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covPPiso.m, 800 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covPref.m, 2069 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covProd.m, 3136 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covRQ.m, 1181 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covRQard.m, 1319 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covRQiso.m, 1165 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covScale.m, 3216 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covSE.m, 1056 , 2017-11-26
gpml-matlab-v4.2-2018-06-11\cov\covSEard.m, 801 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covSEiso.m, 704 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covSEisoU.m, 685 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covSEproj.m, 674 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covSEvlen.m, 1229 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\cov\covSM.m, 6966 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covSum.m, 2619 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\cov\covULL.m, 2120 , 2017-11-26
gpml-matlab-v4.2-2018-06-11\cov\covW.m, 4131 , 2017-11-28
gpml-matlab-v4.2-2018-06-11\cov\covWarp.m, 1988 , 2017-11-28
gpml-matlab-v4.2-2018-06-11\cov\covZero.m, 1116 , 2016-08-25
gpml-matlab-v4.2-2018-06-11\covFunctions.m, 7962 , 2018-08-22
gpml-matlab-v4.2-2018-06-11\doc, 0 , 2019-10-16
gpml-matlab-v4.2-2018-06-11\doc\changelog, 257 , 2018-06-15
gpml-matlab-v4.2-2018-06-11\doc\checkmark.png, 198 , 2010-07-23
gpml-matlab-v4.2-2018-06-11\doc\Copy_of_demoRegression.m, 5188 , 2017-11-27
gpml-matlab-v4.2-2018-06-11\doc\demoClassification.m, 4640 , 2017-11-27
gpml-matlab-v4.2-2018-06-11\doc\demoGrid1d.m, 2968 , 2018-06-15
gpml-matlab-v4.2-2018-06-11\doc\demoGrid2d.m, 4208 , 2018-06-15
gpml-matlab-v4.2-2018-06-11\doc\demoMinimize.m, 910 , 2016-10-11
gpml-matlab-v4.2-2018-06-11\doc\demoRegression.m, 5170 , 2019-09-04
gpml-matlab-v4.2-2018-06-11\doc\demoSparse.m, 3275 , 2016-10-18
gpml-matlab-v4.2-2018-06-11\doc\demoState.m, 3125 , 2018-06-15
gpml-matlab-v4.2-2018-06-11\doc\f0.gif, 26996 , 2016-10-19
gpml-matlab-v4.2-2018-06-11\doc\f1.gif, 4990 , 2013-01-17
gpml-matlab-v4.2-2018-06-11\doc\f2.gif, 15082 , 2013-01-17
gpml-matlab-v4.2-2018-06-11\doc\f3.gif, 13866 , 2013-01-17
gpml-matlab-v4.2-2018-06-11\doc\f4.gif, 13141 , 2013-01-17
gpml-matlab-v4.2-2018-06-11\doc\f5.gif, 19258 , 2013-01-17
gpml-matlab-v4.2-2018-06-11\doc\f6.gif, 28470 , 2013-01-17
gpml-matlab-v4.2-2018-06-11\doc\f7.gif, 31055 , 2013-01-17
gpml-matlab-v4.2-2018-06-11\doc\f8.gif, 14698 , 2013-01-17
gpml-matlab-v4.2-2018-06-11\doc\f9.png, 159343 , 2016-10-28
gpml-matlab-v4.2-2018-06-11\doc\gpml_randn.m, 1109 , 2010-07-23
gpml-matlab-v4.2-2018-06-11\doc\index.html, 65841 , 2018-08-22
gpml-matlab-v4.2-2018-06-11\doc\manual.pdf, 529383 , 2018-08-22
gpml-matlab-v4.2-2018-06-11\doc\README, 21748 , 2018-08-22
gpml-matlab-v4.2-2018-06-11\doc\style.css, 77 , 2010-07-23
gpml-matlab-v4.2-2018-06-11\doc\usageClassification.m, 2660 , 2013-10-16
gpml-matlab-v4.2-2018-06-11\doc\usageCov.m, 3570 , 2018-08-22
gpml-matlab-v4.2-2018-06-11\doc\usageLik.m, 2530 , 2018-08-22
gpml-matlab-v4.2-2018-06-11\doc\usageMean.m, 2264 , 2018-08-22
gpml-matlab-v4.2-2018-06-11\doc\usagePrior.m, 3472 , 2018-08-22
gpml-matlab-v4.2-2018-06-11\doc\usageRegression.m, 2744 , 2016-10-11

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 养站专用万能小偷5.5无限制版
    养站专用万能小偷5.5无限制版,没有任何限制(There is no restriction on the unrestricted version of the special universal thieves 5.5 for maintenance stations.)
    2019-06-09 21:50:42下载
    积分:1
  • 动态规划
    用动态规划法完成的算法程序设计作业,可作参考(The arithmetic programming task completed by dynamic programming method can be used as a reference.)
    2020-06-22 01:20:02下载
    积分:1
  • 1 (2)
    一款很好看的zepto手机移动端弹出提示框图标动画特效,相当简单实用的手机端操作提示效果。(A nice zepto mobile phone pop-up prompt icon animation special effect, quite simple and practical handset operation prompt effect.)
    2018-08-04 17:21:28下载
    积分:1
  • land certificate Print, Print collective land certificate. State
    土地证打印,有集体土地证打印。国有土地证打证-land certificate Print, Print collective land certificate. State-owned land certificate playing cards!
    2022-04-19 21:09:46下载
    积分:1
  • fx预测去噪方法
    利用fx域的预测反褶积可以有效的去除随机噪声,内附数据,能运行调试(Predictive deconvolution using FX domain can effectively remove random noise, enclosing data, can run debugging)
    2017-08-08 08:29:54下载
    积分:1
  • 验证二进制双极性基带系统误码率
    利用matlab验证二进制双极性基带系统误码率(Verify the BER of binary bipolar baseband system)
    2018-11-13 17:15:38下载
    积分:1
  • fuzzyAHP
    用PYTHON实现的计算FAHP模糊矩阵哦,全网唯一认证弱智。(为什么会有人去做这么无聊的事情呢。。。)(Using PYTHON to calculate FAHP fuzzy matrix, the whole network is the only authentication of mentally retarded. Why do people do such boring things?)
    2018-04-15 14:06:01下载
    积分:1
  • PID_AUV
    无人自主水下航行器(AUV)的模型搭建以及PID控制仿真程序。(Unmanned underwater vehicle (AUV) model construction and PID control simulation program.)
    2017-09-29 09:20:43下载
    积分:1
  • 单片机实用教程
    说明:  弹片机教程单片机教程上载内容 返回首页 请一定要上载质量高而且本站没有的源码 (shrapnel-SCM Guide tutorial on the contents of Home Requests must be of high quality on the site but not the source)
    2006-01-27 12:23:12下载
    积分:1
  • PPTcompressive_sensing
    一个牛人写的关于压缩感知的PPT,浅显易懂的介绍了压缩感知的知识,对于初步学习压缩感知理论的新人比较有用。(Written by a cow on compressed sensing PPT, easy to understand introduced knowledge of compressed sensing, preliminary study for the compressed sensing theory of new more useful. )
    2016-04-19 19:16:03下载
    积分:1
  • 696518资源总数
  • 106245会员总数
  • 18今日下载