登录
首页 » matlab » MATLAB_Codes

MATLAB_Codes

于 2021-04-13 发布
0 166
下载积分: 1 下载次数: 1

代码说明:

说明:  matlab智能算法数值分析数值优化路径规划人工智能神经网络(Matlab intelligent algorithm 30 examples, learn numerical algorithms and artificial intelligence path planning numerical optimization)

文件列表:

chapter1, 0 , 2021-04-13
chapter1\example1.m, 1909 , 2010-10-31
chapter1\example2.m, 2113 , 2010-10-31
chapter1\Sheffield的遗传算法工具箱.rar, 423860 , 2015-06-14
chapter10, 0 , 2021-04-13
chapter10\data.mat, 422 , 2010-12-28
chapter10\main.m, 6048 , 2010-12-28
chapter11, 0 , 2021-04-13
chapter11\aberranceJm.m, 1067 , 2007-09-24
chapter11\across.m, 2329 , 2007-09-17
chapter11\cal.m, 1325 , 2007-09-17
chapter11\calp.m, 555 , 2007-09-17
chapter11\caltime.m, 1276 , 2007-09-17
chapter11\Find.m, 178 , 2007-08-22
chapter11\main.m, 2816 , 2015-06-18
chapter11\plotRec.m, 487 , 2007-07-14
chapter11\ranking.M, 4708 , 2010-12-23
chapter11\REINS.M, 5574 , 1998-04-22
chapter11\RWS.M, 1090 , 1998-04-22
chapter11\scheduleData.mat, 527 , 2010-12-23
chapter11\SELECT.M, 2401 , 1998-04-22
chapter11\selectJm.m, 398 , 2007-09-24
chapter12, 0 , 2021-04-13
chapter12\bestselect.m, 1669 , 2010-09-06
chapter12\centre.fig, 7910 , 2010-09-07
chapter12\concentration.m, 479 , 2010-09-06
chapter12\Cross.m, 1294 , 2010-09-06
chapter12\draw.m, 1046 , 2010-09-06
chapter12\excellence.m, 400 , 2010-09-06
chapter12\figure.fig, 9007 , 2010-09-07
chapter12\fitness.m, 901 , 2010-09-07
chapter12\IAdata.mat, 4838 , 2010-09-07
chapter12\incorporate.m, 1102 , 2010-09-06
chapter12\main.m, 3676 , 2010-12-28
chapter12\Mutation.m, 1001 , 2010-09-06
chapter12\popinit.m, 319 , 2010-09-06
chapter12\Select.m, 912 , 2010-09-06
chapter12\similar.m, 377 , 2010-09-06
chapter12\test.m, 580 , 2010-09-06
chapter13, 0 , 2021-04-13
chapter13\sample1, 0 , 2021-04-13
chapter13\sample1\fun.m, 241 , 2010-08-03
chapter13\sample1\main.m, 1579 , 2010-08-05
chapter13\sample1\MexicoHatnew.m, 174 , 2010-08-03
chapter13\sample1\PSO0.m, 1802 , 2010-08-05
chapter13\sample1\PSO1.m, 1859 , 2010-08-05
chapter13\sample1\PSO2.m, 1859 , 2010-08-05
chapter13\sample1\PSO3.m, 1878 , 2010-08-05
chapter13\sample1\PSO4.m, 1863 , 2010-08-05
chapter13\sample1\wchange.m, 353 , 2010-08-05
chapter13\sample2-Rastrgrin, 0 , 2021-04-13
chapter13\sample2-Rastrgrin\fun.m, 197 , 2010-08-09
chapter13\sample2-Rastrgrin\pso.fig, 6256 , 2010-08-09
chapter13\sample2-Rastrgrin\PSO.m, 1571 , 2010-08-09
chapter13\sample2-Rastrgrin\pso.mat, 2624 , 2010-08-09
chapter13\sample2-Rastrgrin\rastrigrin.fig, 123876 , 2010-08-09
chapter13\sample2-Rastrgrin\rastrigrin.m, 128 , 2010-08-09
chapter13\sample3-Griewankan, 0 , 2021-04-13
chapter13\sample3-Griewankan\fun.m, 209 , 2010-08-09
chapter13\sample3-Griewankan\Griewank.fig, 699309 , 2010-08-09
chapter13\sample3-Griewankan\Griewank.m, 146 , 2010-08-09
chapter13\sample3-Griewankan\pso.fig, 5867 , 2010-08-11
chapter13\sample3-Griewankan\PSO.m, 1582 , 2010-08-11
chapter13\sample3-Griewankan\pso.mat, 4509 , 2010-08-11
chapter14, 0 , 2021-04-13
chapter14\GA_run.m, 477 , 2010-08-23
chapter14\PID_Model.mdl, 29558 , 2010-08-22
chapter14\PSO.m, 2589 , 2010-08-23
chapter14\PSO_PID.m, 174 , 2010-08-22
chapter14\问题解决思路.pdf, 116504 , 2010-08-23
chapter15, 0 , 2021-04-13
chapter15\bayg29.txt, 695 , 2009-06-12
chapter15\burma14.txt, 236 , 2009-06-12
chapter15\ch130.txt, 4394 , 2009-06-12
chapter15\ch150.txt, 5098 , 2009-06-12
chapter15\dist.m, 126 , 2009-06-12
chapter15\eil51.txt, 444 , 2009-06-12
chapter15\fitness.m, 419 , 2010-10-16
chapter15\gr96.txt, 1628 , 2009-06-12
chapter15\main.m, 5566 , 2011-03-19
chapter15\Oliver30.txt, 434 , 2009-06-12
chapter15\pr226.txt, 3459 , 2009-06-12
chapter15\pr76.txt, 1117 , 2009-06-12
chapter15\st70.txt, 678 , 2009-06-12
chapter16, 0 , 2021-04-13
chapter16\DF1function.m, 586 , 2010-11-16
chapter16\fitnessRecord.mat, 4236 , 2010-11-12
chapter16\main.m, 2689 , 2015-06-30
chapter16\result.mat, 12567 , 2010-06-29
chapter17, 0 , 2021-04-13
chapter17\PSOt, 0 , 2021-04-13
chapter17\PSOt\forcecol.m, 172 , 2004-04-27
chapter17\PSOt\forcerow.m, 181 , 2004-04-27
chapter17\PSOt\goplotpso.m, 5790 , 2010-11-04
chapter17\PSOt\linear_dyn.m, 749 , 2004-08-23
chapter17\PSOt\normmat.m, 4588 , 2006-03-17
chapter17\PSOt\pso_Trelea_vectorized.m, 22526 , 2009-12-20
chapter17\PSOt\spiral_dyn.m, 841 , 2004-08-27
chapter17\testfunctions, 0 , 2021-04-13
chapter17\testfunctions\ackley.m, 871 , 2004-08-23

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • WAVELET_WORK
    THIS MATLAB CODE REDUCE THE SPECKLE NOISE IN SAR IMAGE, IT USE WAVELET FILTER THEN USED CASCADE THREE FILTERS IN TIME DOMAIN (HYBRID TIME AND FREQUENCY DOMAIN). THIS CODE NEED SOME MODIFICATIONS SINCE THERE ARE SOME PROBLEMS LIKE BY COMPUTE PSNR AND THE WAVELET HAS SOME ERRORS IN COMPUTE THE DE-NOISING
    2010-09-10 14:45:57下载
    积分:1
  • HMM
    matlab下基于HMM算法的语音信号的识别与研究 包含HMM的基本工具包(HMM-based algorithm matlab voice signal containing the identification and study of the basic HMM Toolkit)
    2009-05-16 15:29:03下载
    积分:1
  • graymatrixfeatures
    haralik feature program
    2013-03-15 05:19:43下载
    积分:1
  • GCmex2.tar
    edison wrapper: very excellent for detection object
    2012-11-22 16:58:25下载
    积分:1
  • contours
    easy code taking picture from web cam and showing the countours - use the logarithm filter
    2010-09-08 22:41:02下载
    积分:1
  • Matlab-examples
    matlab实例汇总,对于初学者是很好的学习资料(MATLAB examples)
    2011-08-23 09:14:06下载
    积分:1
  • RBF-neural-network
    用matlab编程,关于RBF神经网络预测的问题(Using matlab programming, on the RBF neural network prediction problem)
    2013-10-12 14:19:30下载
    积分:1
  • ALOHA
    随机访问网的性能仿真,附有详细文档和matlab源码(Random access network performance simulation, with detailed documentation and source code matlab)
    2007-11-14 15:06:50下载
    积分:1
  • work
    说明:  利用反函数方法,在均匀分布的基础上产出具有瑞利分布的概率分布的数据.(By inverse function method, based on the output of uniform distribution with the Rayleigh distribution the probability distribution of the data.)
    2011-02-19 10:57:30下载
    积分:1
  • Polynomial
    对于具体实验时,通常不是先给出函数的解析式,再进行实验,而是通过实验的观察和测量给出离散的一些点,再来求出具体的函数解析式。又因为测量误差的存在,实际真实的解析式曲线并不一定通过测量给出的所有点。最小二乘法是求解这一问题的很好的方法,本实验运用这一方法实现对给定数据的拟合。(For specific experiments, usually not first given function analytic formula, and then experiment but given by the experimental observation and measurement of a number of discrete points, and come back to find the specific function analytic formula. And because the presence of measurement error, the actual real analytic curve does not necessarily pass through all points of measurement given. The least squares method is a good way of solving this problem, the experimental use of this method of fitting the given data.)
    2013-03-03 14:06:21下载
    积分:1
  • 696518资源总数
  • 105885会员总数
  • 31今日下载