登录
首页 » Others » VB 编写 写txt文件 读取txt文件

VB 编写 写txt文件 读取txt文件

于 2021-05-06 发布
0 250
下载积分: 1 下载次数: 1

代码说明:

利用VB 编写的可以产生三维点云数据的程序,也可以读取txt文件 产生的点云数据为 方块 圆柱 圆锥 圆环 。

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 霍尔传感器的原理及其应用实例.zip
    【实例简介】霍尔传感器是根据霍尔效应制作的一种磁场传感器。霍尔效应是磁电效应的一种,这一现象是霍尔(A.H.Hall,1855—1938)于1879年在研究金属的导电机构时发现的。后来发现半导体、导电流体等也有这种效应,而半导体的霍尔效应比金属强得多,利用这现象制成的各种霍尔元件,广泛地应用于工业自动化技术、检测技术及信息处理等方面。霍尔效应是研究半导体材料性能的基本方法。通过霍尔效应实验测定的霍尔系数,能够判断半导体材料的导电类型、载流子浓度及载流子迁移率等重要参数。…………
    2021-12-01 00:46:04下载
    积分:1
  • 双向隔离型DCDC变换器单移相控制pscad仿真
    隔离型双向dcdc变换器,单移相控制方式,结构比较基础,可以参考,用pscad4.5搭的
    2020-12-11下载
    积分:1
  • echarts全国和省级地图
    中国echarts地图数据与全国各省级echarts地图数据,包含了.js和.json
    2020-12-10下载
    积分:1
  • 学校人力资源管理系统
    学校人力资源管理系统 运用VC++和SQL的软工课设 包括对教师的管理以及院系的管理 代码 数据库及操作方法很全
    2021-05-06下载
    积分:1
  • 多目标自适应和声搜索算法
    提出了一种利用Pareto支配来求解多目标优化问题的自适应和声搜索算法(MOSAHS)。该算法利用外部种群来保存非支配解,为了保持非支配解的多样性,提出了一种基于拥挤度的删除策略,这个策略能较好地度量个体的拥挤程度。用5个标准测试函数对其进行测试,并与其他多目标优化算法相比较。实验结果表明,与其他的算法相比,提出的算法在逼近性和均匀性两方面都有很好的表现,是一种有效的多目标和声搜索算法。102011,47(31)Computer Engineering and Applications计算机工程与应用HMS;(4)和声记忆保留概率HMCR的上下界;(5)音调调节其中,n为所得解的个数,d1为第个解对应目标向量与其最近概率PAR的上下界;(6)最大迭代次数M。的目标向量之间的距离,d为d的平均距离。SP=0表示算步骤2初始化和声记忆库。法所得的解均匀的分布在 Pareto前沿。该指标反映算法所得步骤3产生新解。每次可以通过三种机理产生一个新解分布的均匀程度。解。(1)保留和声记忆库中的分量:(2)随机选择产生;(3)对多样性指标:将算法获得的所有非劣解按某个目标函数(1)、(2)中某些分量进行微调扰动产生。每次产生M个新个体。值的大小有序地分布在目标空间上,h为相邻两点间的距离,步骤4外部种群的更新。从记忆库租新个体中找出非支h为h的平均值,b,b分别为算法获得的边界解与相应极端配解放在外部种群中,计算外部种群的支配关系删除支配解之间的距离,则多样性指标△为解,把非支配解侏留在外部种群中。若外部种群中非支配解的数目超过外部种群规模,则删除多余的个体,每次仅删除hy+h,+∑|h-b(8)个,直到达到外部种群的规模。h,+h1+(n-1h步骤5更新记忆库。计算记忆库和新产生的个体的序极端解指某一目标函数值最大而其他目标函数值最小的并将其按照从大到小的顺序进行排列,前HMS个个体作为新解。n为非劣解的个数。当算法获得的非劣解完全均匀的分的记忆库,进入下一次进化布在均衡面上,h=0,h1=0,所有的h=h,这时△=0。因步骤6判断是否满足终止条件,若满足,则停止迭代,输此,A指标反映非劣解能否均匀的分布在整个均衡面上。出 Pareto最优解集,否则,返回步骤3。4.2数值结果334算法分析为了验证本文提出的算法的有效性,本文采用具有不同由亍和声搜索算法主要是基于邻域搜素的,初始解的好 Pareto前沿的几个典型函数进行仿真实验测试。测试函数坏对搜索的性能影响很大。和声搜索算法可以随机产生初始ZDT1、ZDT2、ZDT3、ZDI4、ZDT6是二维目标函数。由于处理解,也可以通过使用其他的启发式算法或其他方法产生较好多目标优化问题的和声搜索算法还不是很多,所以本文仅与的初始解。和声记忆库HM的大小M是和声搜索算法的种和声搜索算法 IMOHS相比,然后与4种多目标优化算法个重要参数,和声搜索算法之所以具有更强的全局搜索能力,相比,测试结果见表1-表4很大程度上依赖于HM的存在,一般来说,M越大,找到仝局表1MOHS和 MOSAHS的G表2 IMOHS和 MOSAHS的sP最优区域的能力越强。但是随着M的増人,计算量将会变IMOHSMOSAHSIMOHSMOSAHS4大,从而影响到最终搜索到最优解的速度。和声保图概率Dm1781420241-01Dm11433D031.0OE-350100E-0055.3E-36.5328E-004HMCR是和声搜索算法的另一个重要参数,其取值范围是0到5.39-42.1293L-0043.3E-30.0059之间,它决定每次迭代过程中新解产生的方式。在和声搜索ZDT2ZDT224E-48.8573E-0052.4E-35.9104E-004算法中,因新解产生时每个变量都依赖于HMCR,故HMCRDT39.80E-465670E-004ZDT32.|B-20.0077应取较大的值,通常HMCR的值在0.8到1.0之间。音调调节1.7OE-324699E-00529E-28.5088E-004率PAR在和声搜索中起控制局部搜索的作用,它可使搜索逃表3儿种多目标优化算法的GD离局部最优,其值一般取0.1到0.5之间。NSGA-IISPEA2MOPSOIOSADE MOSAHS1.3437E-33.8175E-31.8564E-11.2485E-329624EZITI14078E-449142E-37.7429E-297574E-550100E-0054数值实验9.8112E-48.6104E-352428E-19.8051E-42.1293E-004ZDT241算法性能的评价指标6.4138E-42.5973E-32.9699E-149107E-58.8573E-005多目标优化问题的解质量评价主要集中在所求得的解与2.4783E-397165E-34.3418E-2.1620E-36.5670E-004ZDT31.2746F-45.2305F-364880E-219962F-42.4699E-005理论最优值之间的差距,以及求得的解的分散程度和多样性,5.1635E-29.2512E12010E-349244E-004这里采用由 Van veldhuizen和 Lamont在1998年提出来的世ZDT413281E-34.282lE-18.3745E-549411E-005代距离( Generational Distance,GD)来衡量所求解与理论解75-21.909-252103E-22656-31190-004ZDT6之间的差距,世代距离被定义为如下形式:60797E-31.3994E-32.4963E-21.0967E-48.0065E-006表4儿种多目标优化算法的AGD=NSGA-IISPEA2MOPSO MOSADE MOSAHS0.504290.296440.2038050.131950.4063其中,n为最优解数目,d,为所求得第i个个体在目标空间与理ZDTI3.9251E-21.0850E-116956E-25.692lE-300219论 Pareto最优前沿的最小欧氏距离。世代距离GD越小,算法0.487750.505170.2880260.120990.3764ZDT2逼近 Pareto最优解集的程度越妤,当所得到的解刚好和从最优2.7686E-21.8356E-11.7580E-279444E-300359前端取得的点重合时,GD=0。0.590250.503100.6177960.437830.6388ZDT33.0439E-29.7283E-23.5019E-28.0801E-300103解的分散程度用下式来度量0.375240.727660.3235490.118270441ZDT42.4448E-25.515-13.2953E-25.869E-30.0227SP=n-/~(d-d1)0.486ll0.296441.1232580.1331904325(7)ZDT63.6054E-21.0850E-11.731E-19.8303E-300363InInj∈(1,n)②/(x)-/1(),=1,2,…,n,i≠其中表1、表2中MOHS算法的数据来源于文献5],和o1994-2012ChinaAcademicJournalElectronicPublishingHouse.Allrightsreservedhttp://www.cnki.net陈莹珍,高岳林:多目标自适应和声搜索算法2011,47(31)0.900.80.80.60.70.70.40.60.60.20.30.20.40.10.10.800.10.20.30.40.50.60.70.80.91.000.10.20.3040.50.60.70.80.91.000.10.20.30.40.50.60.70.80.9图1ZDT1图2ZDT2图3ZDT3声记忆库的规模为10,和声保留概率的上下界HMCR==0.95,5总结HMCR=0.85,音调调节概率的上下界PAR、=0.2,PAR=本文将和声搜索算法应用于多目标优化问题的求解,提0.15,最大迭代次数为1000.为了消除实验中的随机性,并进出了一种新的基于拥挤度的多目标和声搜索算法 MOSAHS。行算法性能指标评价,对每个测试函数均重复计算10次。表3、该算法利用单个解与解之间的距离以及单个解与整体解之间表4中 NSGA-II,SPEA2, MOPSO, MOSADE的数据,来源于文的距离,删除种群中的个体,并利用序来更新和声记忆库。数献[161。对丁本文提出的多目标和声搜素算法 MOSAHS,和值实验数据表明,提出的算法在逼近性和多样性两方面都有声保留概率的上下界分别为095085,音调调节概率的上下界很好的表现是一种有效的多目标和声搜索算法。然而,和声分别为0.2、0.15,和声记忆库的规模为10,外部种群的规模为搜索算法和其他群智能算法一样,收敛性的理论证明很困难100,最大迭代次数为10000,算法运行10次。有待进一步的深入研究。表1中上行表示算法收敛度指标GD的平均值,下行表示GiD的标准方差;表2中上行表示分散度指标SP的平均值,下参考文献:行表示SP的标准方差;表3中上行表示算法收敛度指标GD的 Schaffer J D Multiple objective optimization with vector evaluat-平均值,下行表示GD的标准方差;表4中上行表示多样性指ed genetic algorithms[C]//Proceedings of the lst IEEE International Conference on Genetic Algorithms. Lawrence Erlbaum标Δ的平均值,下行表示多样性指标△的标准方差。1985:93-100从表1、表2可以看出本文提出的算法 MOSAHS在收敛(2]HomJ, Nafpliotis N, Goldberg D E A niched Pareto genetic al度和分散度上均优于 IMOHS;从表3、表4可以看出,与NSgorithm for multi-objective optimization[C],Proceedings of thGA- SPEA2、 MOPSO、 MOSADE算法相比,本文提出算法Ist IEEE Conference on Evolutionary Computation, PiscatawMOSAHS的收敛性优于前面四种算法,在多样性方面,与NS994.1:82-87GA- I SPEA2算法相当,此 MOPSO、 MOSADE算法稍差。[3] Srinivas N, Deb KMulti-objective function optimization using图1~图5是本文提出的算法( MOSAHS)对ZDT1,ZDT2non-dominated sorting genetic algorithms[J]. Evolutionary CompuZDT3,ZDT4,ZDT6的函数图像。tation,l994,2(3):221-248[4] Deb K, Pratap A, Agarwal S, et al. A fast and elitist multi-objective genetic algorithm: NSGA-IIJ.IEEE Transactions on Evolu0.8tionary Computation, 2002, 6(2): 182-1970.7[5] Zitzlcr E, Thiclc L Multi-objcctivc evolutionary algorithms: a0.6comparative case study and the strength parel approach0.5IEEE Transactions on Evolutionary Computation, 1999, 3(4)0.40.2[6 Zitzler E, Thiele L SPEA2: improving the strength pareto evolu-0.1ionary algorithm for multi-objcctivc optimization[R].Rcscarch00.10.20.3040.50.60.7080.91.0JrL,2001[7 Knowles J, Corne D The pareto archived evolutionary strategy图4ZDT4A new baseline algorithm for multi-objective optimization[C]//1.0Proceedings of the Conference on Evolutionary Computation Pis-0.9ltaway, NJ: IEEE Press, 1999: 98-10508[8] Tsai S J, Sun T Y, Liu CC, et al. An improved multi-objparticle swarm optimizer for multi-objective problems[J]. ExpertSystems with Applications, 2010, 18(2): 1-150.4[9 Geem Z W, Kim J H, Loganathan G V.A new heuristic optimi-0.zation algorithm: Harmony scarch[J]. Simulation, 2001, 76(2): 60-80[10] Mahdavi M, Fesanghary M, DaInangir E An improved harmony0.20.30.40.50.60.70.80.91.0search algorithm for solving optimization problem] AppliedfMathematics and Computation, 2007, 188(2): 1567-1597图5ZDT6(下转174页o1994-2012ChinaAcademicJournalElectronicPublishingHouse.Allrightsreservedhttp://www.cnki.net1742011,47(31)Computer Engineering and Applications计算机工程与应用插值算法对(a)放大3×3倍后的效果图;图6〔g)是采用本文中个像素需24位。在实现本文算法时,需在读取位图文件信息的插值算法对(a)放大3×3倍后的效果图,其中(a-b-1/6,头时进行判断是属哪类图像(灰度/24真彩色),对于灰色图像1=2=15°)。图7(a)是256×256的原始图像,(b)为原图经只需对图像进行逐像素(也即逐字节)的处理即可。而对于24降采样生成的128×128的缩小图像;(c)、(d为分别采用最邻位彩色图像则分别对每一像素中的3个分量分别处理即可,所近插值、双线性插值算法对(b)放大2×2倍后的效果图。(e)是得到的结果与灰度图是一致的,如图8所示。(b)用 Prewitt算子检测到的图像边缘效果图,(f)是采用本文提出的插值算法对(b)放大2×2倍后的效果图,其中(a=b=1/4,q1=92=15°)。从灰度值显示及图像效果可以看出本文所提出的算法在一定程度上突出了边缘,并修复了部分断裂的边缘,图6(d)中的像素灰度值显示当放大倍数为2×2时,修复边缘的效果更加显著。(a)原图(b)双线性插(c)本文算法(2×2)值(2×2)(a=b=16,1=2=15°)图8采用不同插值算法放大的图像效果图5结论基于图像边缘信息的双线性插值算法充分利用了图像的(a)原图(b)原图降采样(c)最邻近插边缘信息对放大图像边缘上的插值点及边缘邻接点做了较好值法(2×2)的插值处理,这种处理方式使放大后的图像在很大程度上保护了图像的细节,较其他插值算法简单且效果明显,更优于传统双线性插值算法。(d)双线性(e)用 Prewitt算(f)本文算法(2×2)参考文献:插值(2×2)子检测到的边缘(a=b=14,91=中2=15[] Castleman K R数字图象处理[M]北京:清华大学出版社,202图7采用不同插值算法放大的图像效果图117-119[2]孙成叶,桑农图像双线性插值无级放大及其运算量分析[计算上述实验采用的是8位的灰度图像,其实本文所提出的算机工程,2005,31(9:167-169法同样适用于彩色图像,尤其是24位的真彩色图像。灰度图[3]谢美华,王正明基于图像梯度信息的插值方法中国图象图形像的存储文件带有图像颜色表,此颜色表共有256项,图像颜学报,2005,10(7):856-861色表中每一项由红、绿、蓝颜色分量组成,且红、绿、蓝的颜色4Liⅹi, Orchard M T New edge-direcled inlerpolalionJJIEEE分量值都相等。而且,灰度图像的每个像素由8位组成,其值Transactions on Image Processing, 2001, 10(10): 1521-1527范围从0到25,表示256种不同的灰度级,每个像素的像素值5岁立摩,杨勋年基于细分的图像抽值算法门计算机轴助设计与是图像颜色表的表项入∏地址。对于彩色图像而言,若是伪图形学学报,2006,18(9):1311316.彩色图像,则其与灰度图像相似,其存储文件中也带有图像颜孟晋字,华思基于形状的二维灰度图象插值门中国图象图形色表,整幅图像也仅有256种颜色,每个像素由8位组成,但在学报,2003,3(3):312-316图像颜色表中的红、绿、蓝颜色分量不全相等,此时,每个像素I] Yang Xunnian Normal based subdivision scheme for curve design[J]. Computer Aided Geometric Design, 2006, 23(3): 243-260的像素值不是出每个基色分量的数值决定,而是把像素值当s]杨淑莹vC+图像处理程序设计M2版北京:清华大学出版社做图像颜色表的表项入口地址。而24位的真彩色图像的存储2005:130-132文件中则不带有图像颜色表,图像中每一像素是由RGB三个19G0 nzalez r o. Woods e数字图像处理M2版北京:电子1分量组成,每个分量各占8位,每个分量的取值是0到255,每业出版社,2009:463-471上接111页)[15 van Veldhuizen D A, Lamont G B Evolutionary computation[11] Kang S L, Geen Z W.A new structural optimization methodand convergence to a Pareto front[C]/Koza J R Late Breakbased on the harmony search algorithm[J]. Comput Struct, 2004ing Papers at the genetic Programming Conference, Stanford82(9/10):781-798University, California, Stanford Bookstore, 1998: 221-228[12] Geem Z W. Optimal cost design of water distribution networks[l6]刘思远,刘景青.一种新的多目标改进和声搜索优化算法门计算using harmony search[J].Eng Optimiz, 2006, 38(3): 259-280机工程与应用,2010,46(34):27-30[131 Deb K Multi-objective optimization using evolutionary algorithm(M. [17] Wang Yaonan, Wu Lianghong, Yuan Xiaofang. Multi-objectiveChichester: lohn Wiley&Sons, 2001self-adaptive differential evolution with elitist archive and[14]陈莹珍,高岳林混沌自适应和声搜索算法太原理工大学学crowding entropy-based diversity measure[J]. Soft Compute报,2011,42(2):141-1442010:193-209o1994-2012ChinaAcademicJournalElectronicPublishingHouse.Allrightsreservedhttp://www.cnki.net
    2020-12-07下载
    积分:1
  • 史上最全最详细的flink 中文教(千多页pdf).pdf
    最全最详细的flink 中文教程,详细介绍各个接口,并附带demo(一千多页pdf)最全最详细的flink 中文教程,详细介绍各个接口,并附带demo(一千多页pdf)执行配置1.5.7.1程序打包和分布式执行1.5.7.2并行执行1.5.73执行计划1.5.74重启策略1.5.7.5类库158FlinkCeP-Fink的复杂事件处理1.5.8.1风暴兼容性Beta158.2Gelly Flink Graph AP158.3图AP1.5.84迭代图处理1.5.8.4.1类库方法1.584.2图算法1.5.8.4.3图形生成器1.5.844二分图1584.5FlinkML- Flink的机器学习1.5.85快速入门指南1.5.8.5.1如何贡献5.8.5.2交义验证1.58.5.3Distance metrics5.8.54K-Nearest Neighbors关联158.55MinMax scaler1.5.8.5.6Multiple Linear regression1.5.8.5.7在管道的引擎盖下看158.5.8Polynomial Features158.59随机异常值选择1.5.8.5.10Standard scaler158.5.11Alternating Least squares1.5.8.5.12SVM using COCoA1.58.5.13最佳实践1.59AP迁移指南1.5.10部署和运营集群和部署1.6.1独立群集1.6.1.1YARN设置1.6.1.2Mesos设置1.6.1.3Kubernetes设置1.6.14Docker设置1.6.1.5亚马逊网络服务(AWS)1.6.1.6Google Compute Engine设置1.6.1.7MapR设置1.6.1.8Hadoop集成1.6.19JobManager高可用性(HA)1.6.2状态和容错16.3检查点1.6.3.1保存点1.6.3.2状态后台1.6.3.3调整检查点和大状态1.6.3.4配置1.64生产准备清单1.6.5命令行界面166Scala REPl1.6.7Kerberos身份验证设置和配置168SSL设置6.9文件系统1.6.10升级应用程序和Fnk版本1.6.11调试和监控度量1.7.1如何使用日志记录1.7.2历史服务器1.7.3监控检查点1.74监测背压1.7.5监控 REST AP1.7.6调试 Windows和事件时间1.7.7调试类加载1.7.8应用程序分析1.7.9Flink Development1.8将 Flink导入|DE1.8.1从 Source建立Fink8.2内幕组件堆栈1.9.1数据流容错19.2工作和调度19.3任务生命周期194文件系统19.55Apache Flink文档Apache Flink文档译者: flink. sob.cn在线阅读●PDF格式EP∪B格式●MOB格式代码仓库本文档适用于 Apache Flink17 SNAPSHOT版。这些页面的建立时间为09/08/18,中部标准时同07:53:00°Apache Flink是一个用于分布式流和批处理数据处理的开源平台Fnk的核心是流数据流引擎’为数据流上的分布式计算提供数据分发’通信和容错。 Flink在流引擎之上构建批处理’覆盖本机达代支持,托管内存和程序优化。第一步概念∶从Fink的教据流编程模型和分布式运行时环境的基本概念开始。这将有助于您了解文档的其他部分·包括设置和编程指南σ我们建议您先闖读这些部分教程:o实现并运行 Data strean应用程序o设置本地Fink群集编程指南:您可以阅读我们关于基本AP|概念和 Data Stream A門或 Data Set APl的指南’以了解如何编写您的第一个Fink程序。部署在将Fink工作投入生产之前,请阅读生产准备清单发行说明发行说明涵盖了Fink版本之间的重要更改。如果您计划将Fink设置升级到更高版本,请仔细阅读这些说明。Fink1.6发行说明Fink1.5发行说明。外部资源6Apache Flink文档● Flink Forward: Flink forward网站和 You tube上提供了以往会议的讲座。使用 Apache Flink进行强大的流处理是一个很好的起点●培训∷数据工匠的培训材料包括幻灯片·练习和示例解決方案。·博客: Apache Flink和数据工匠博客发布了有关Fink的频繁深入的技术文章概念概念数据流编程模型数据流编程模型译者: flink. sob.cn抽象层次Flink提供不同级别的抽象来开发流/批处理应用程序SQLHigh-level LanguageTable AplDeclarative dslDataStream/Data Set APICore aplsStateful Stream ProcessingLoW-level building blockstreams, state, [event] time)●最低级抽象只提供有状态流。它通过卩 rocess Function嵌入到 Datastream aF丨中。它允许用户自由处理来自一个或多个流的事件,并使用一致的容错状态此外,用户可以注册事件时间和处理时间回调,允许程序实现复杂的计算实际上,大多数应用程序不需要上逑低级抽象,而是针对 Core a叫编程,如Data stream AP(有界/无界流)和 Data set ap(有界数据集)。这些流畅的A門提供了用于数据处理的通用构建坎’例如各种形式的用户指定的转换’连接’聚合’窗口’状态等。在这些AP丨中处理的数据类型在相应的编程语言中表示为类低级尸 rocess function与 Data stream A尸/集成’因此只能对某些算子操作进行低级抽象。该数据集A尸隈提供的有限数据集的其他原语,如循环/迭代。●该 Table ap是为中心的声明性DSL表,其可被动态地改变的表(表示流时)。该 Table a門遵循(扩展)关系模型:表有一个模式连接(类似于在关系数据库中的表)和A門|提供可比的算子操作·如选择,项目,连接,分组依据’聚合等 Table a門程序以声明方式定乂应该执行的逻辑算子操作,而不是准确指定算子操作代码的外观。虽然 Table ap丨可以通过各种类型的用户定义西数进行扩展’但它的表现力不如 Core AP’但使用更简洁(编写的代码更少)。此外, Table a門l程序还会通过优化程序·在执行之前应用优化规则。可以在衣和 Data strean/ Data set之同无缝转换’允许程序混合7 ble aP以及Data Stream u Data Set API数据流编程模型Flink提供的最高级抽象是SQL。这种抽象在语义和表达方面类似于7ab/eA門·但是将程序表示为SQL查询表达式。在SQL抽象与 Table apl紧密地相互作用’和SQL查询可以通过定义表来执行7ab/eA尸程序和数据流Flink程序的基夲构建块是流和转换。(请注意,Fink的 Data set a|中使用的Data Set也是内部流-稍后会详细介绍。)从概念上讲·流是(可能水无止境的数据记录流’而转换是将一个或多个流作为一个或多个流的算子操作。输入’并产生一个或多个输出流。执行时’Fink程序映射到流数据流’由流和转换算亍纽成σ毎个数据流都以一个或多个源开头,并以一个或多个接收器结東。数据流类似于任意有向无环图(DAG)°尽管通过迭代结构允许特殊形式的循环,但为了简单起见’我们将在大多数情况下对此进行掩饰。Datastream lines env. addsourceSourrenew FlinkKafkaconsumer>(.)Datastream Event> events =lines. map((line)-> carse(line)了FBs∫n?ato胃Datastrearrs-atis-.cs> statskerby (id"!fransformationtimewindow (Time, seconds(10)apply(new MyWNindowAggregationFurction();stas. addsink(new Rolling sink(path),SinkLsourceT! ansforratio门sinkperatorOperatorsOperatorkey By(/Sourcemap() window()SinkapplystreamStreaming Datarow通常,程序中的转換与数据流中的算子之同存在一对一的对应关系。但是,有时一个转换可能包含多个转换算子源流和接收器记录在流连接器和批处理连接器文档中。 Data Stream算子和 Data Set转换中记录了转换。10
    2020-11-04下载
    积分:1
  • 基于HOG特征与SVM的车辆检测方法研究
    随着生活水平的不断提高,汽车成为人们生活不可或缺的一部分。汽车总量的不断攀升造成城市交通拥堵不堪,伴随而来是频发的交通事故。在这个背景下智能交通越来越受到人们的关注,与此相关的目标检测技术的研究也得到很大的关注,车辆检测就是其中一个关键的组成部分。车辆检测由于其本身具有的挑战性,例如车辆形状的不同,车辆的视角的不同,车辆的遮挡,光照的差异变化,使车辆检测成为一个十分困难的任务。当前虽然对于车辆检测的研究已经取得一部分的成果,但是现存算法任然具有局限性,在各种环境下无法得到让人满意的效果,因此本文针对车辆检测进行了研究。本文所做的工作主要包括两个部分:一研究国内外该课题方向的研究现状,对比不同
    2020-12-11下载
    积分:1
  • 基于MATLAB的最优化算法代码和实验报告.rar
    【实例简介】这是我以前最优化课的实验报告,希望对大家有所帮助。 用MATLAB求解无约束的问题,主要有最速下降法,牛顿法,共轭梯度法,变尺度法(DFP和BFGS法),非线性最小二乘法。 用MATLAB求解有约束的问题,主要是外惩罚函数和广义乘子法。 以及一些对具体问题的分析,MATLAB的代码在文档里都有。
    2021-12-01 00:44:57下载
    积分:1
  • FPGA实现UART串口通信最全资料
    FPGA实现UART串口通信资料,不仅有基于Quratus II 的源代码,还有一篇WORD文档的详细说明,并附有串口调试助手。学习RS232串口通信,真的比较全了。
    2020-12-05下载
    积分:1
  • PCM的码及解码 matlab源
    基本要求:产生长度为1000的标准正态分布的随机信号,画出时域波形及频谱;采用u=255的非均匀PCM编码,每符号为8bit,画输入-输出关系图;计算信号量化噪声比(SQNR);信道误码率为10-3;解码,并画出u律反变换后的信号时域波形及频谱。扩展要求:采用均匀PCM、量化级数可变、信道误码率可变。
    2020-12-10下载
    积分:1
  • 696518资源总数
  • 106215会员总数
  • 5今日下载