登录
首页 » Others » 晶圆缺陷检测与分类的卷积神经网络

晶圆缺陷检测与分类的卷积神经网络

于 2021-05-06 发布
0 330
下载积分: 1 下载次数: 6

代码说明:

晶圆缺陷检测与分类的卷积神经网络;针对晶圆检验时扫描电镜图像的缺陷检测和缺陷分类两问题,采用了“ ZFNet”的卷积神经网络来分类晶圆缺陷,并基于该分类器实现了一种“基于块的卷积神经网络”缺陷检测算法。为了提高准确率和加快速度,又改动“更快的区域卷积神经网络”实现了另一种检测算法。第卷第期邡鑫,史峥:晶圆缺陌检测与分类的卷积神经网络ZENet classifierDarker ImIn.ril” HumpBitel检测算法示意图在训练检测器时,数据集是检测器原始尺寸的图像,且包含标记好的缺陷区域和类型。我们结构通过·系列数据扩张操作,得到组数据,随机选取相比于检测算法主作为训练集,作为测试集。要从以下三方面进行了针对性的改进算法中需要优化的参数有滑动窗口尺寸滑()针对重复计算卷积的缺点,采用先动步幅、概率阙值、面积阙值,由于无法求出统一计算特征图,再按)进行映射各参数与检测结果的明确关系式,所以采用遍历法优化参截取的办法。如图,先通过卷积网络(数。因为检测到的缺陷尽量正确和尽量检测到所有缺陷是)对输入图像计算得到其特征图,因为在输入图像矛盾的,故以精确率和召回率的调和平均值作为优上的都能映射到特征图上,所以从输入图像上按化目标,也可根据实际需要调整两者权重满足不同侧重。割取图像进行卷积运算可以替代为直接从特征图上按测试结果映射后的范围割取,从而避免多次重复计算卷积。由于用训练好的检测模型对测试集检的大小形状不·,而全连接层的神经元连接数是固定的,测,计算模式下每张图大概耗时如果检测到的缺所以对割取得到的子特征图,通过层次采样到统陷与标准答案的且类型相同,则判为正确,否尺寸以连接到全连接层。则判为错误。得到结果如表,计算得:laut Image精确率Feature Map召回率ROI其屮正确缺陷的平均表检测器测试结果数量正确错误network有缺陷(正类)图映射示意图从检测结果来看该算法基本实现∫对图像上晶圆()针对滑动窗口尺寸单·的缺点,增缺陷的检测和分类,但是值较低,缺陷检测位置不加了滑动窗口的尺寸类型,并且增加由一个全卷积网络准确,检测耗时较长,分析其原囚如下)组成的()检测出错的数据中,缺陷较大的类型易判断错,)来预判断是否有缺陷。本文采用面积缺陷较小的容易被漏掉,说明只使用一种尺寸的滑动框很分别为,长宽比分别为、共难适应尺寸变化范围较大的缺陷种尺寸的滑动窗口,依次计算其中有缺陷的概率,再从中)滑动框步幅减小则算法耗时平方倍增加,而步幅筛选出一定数量最有可能有缺陷的区域,进行非极大值抑过长造成缺陷概率分布图分辨率较差,从而检测到缺陷位制(),最后得到一定数置准确度较差量的候选区域。()相邻滑动框都有大量重叠,所以每个区域都被多()针对缺陷检测位置准确度差的缺点,次重复送入计算卷积,导致算法耗吋较长。在全连接层后连接一个边界回归层在与上述检测算法相似的图像目标检测领域,近来出用来修正缺陷位置,该回归层与分类层并列。现的很好的克服了以上缺点并取得了很好的针对本文的缺陷检测问题,直接套用标准效果,所以下面介绍如何通过改动实现品圆并不能解决问题。因为判断晶圆的缺陷类型通常需缺陷的检测与分类。要结合缺陷区域周围的图形信息,而在预判断是否有C1994-2017ChinaAcademicJournalElcctronicPublishinghOusc.Allrightsrescrved.http://www.cnki.nct计算机工程年月日缺陷吋还进行了边界回归。虽然更加准确的给出缺陷的位()将原尺寸为的图像调整为置,但送入检测网络的特征儿乎不包含缺陷周围图肜信息,使得滑动窗口尺寸能够适应缺陷大小的变化范围,也可以导致缺陷分类不准。故木文对标准徹了一些根据实际情况来具体调整。改动:得到缺陷检测算法如图,卷积网络(()将改为只判断滑动窗口内是否有缺陷,而,)将输入图僚转换成多种特征图;根据不进行边界回归,也就是只计算所有滑动窗口有缺陷的概特征图从滑动窗口中选出最有可能存在缺陷的率,选取可能性最大的个,做非极大值抑制,再选出层根据特征图中抽取出对应特征组成特可能性最大的个进行检测。征向量;检测网络()根据特征向()将卷积层的尺寸加大为,加大感受野量判断缺陷类型,并进行边界回归;最后通过和概率),从而在判断滑动框內是否有缺陷吋能参阈值对候选缺陷进行过滤即可得到最终缺陷。考更多的周围信息。Detection NetworkonFolutionnl actorSoftmaxRuI Puling liver,e Prop卟 edMS+PrubilitessionInput Image 1024*1024Fully 10 dyercrectCcrvchrionalLaver size 747图检测算法示意图模型训练和平均值作为优化目标,并且使用相同的训练集和图中的检测算法也是基于架构实现,因为卷测试集积网络提取的特征类型对相似普遍有效,故其卷积网络的测试结果参数是直接迁移第章分类器的卷积层参数。但是用训练好的检测模型对测试集检测,和的参数则需要通过方法进行训练,标准计算模式下每张图大概耗时,采用相同判定标准,提供了分开和联合两种训练方式。为了节约得到检测结果如表(其中负类总数与表中总数不同是因时间,本文采用联合训练方式,并结合缺陷检测问题的实为同一张图屮可能检测到多个缺陷),计算得际情况调整超参数精确率在训练时,对每张输入图像,要计算的滑动窗口召回率数量庞大(种尺寸的滑动窗口,滑动步幅)。所以从中随机抽取个作为训练集,其中正例其中正确缺陷的平均负例,且正例占比不超过。分类器采用表检测器测试结果损失函数数量正确错误在训练时,设置提供个,从中随有缺陷(正类)机选取个作为训练集,其屮正例无缺陷(负类)负例,且正例占比不超过。另外设置学从结果来看该算法各方面都优于检测算习率分类器采用损失函数,而边界回法和值更高说明检测检测缺陷类型正确归采用函数。且位置准确,而且速度也大大提高(检测一张图像耗时从为了与检测算法对比,在最后通过遍历法缩小到)。如图为检测缺陷示例,共中标注了缺陷优化和概率阈值时,同样以精确率和召回率的调位置、类型和对应概率C1994-2017ChinaAcademicJournalElcctronicPublishinghOusc.Allrightsrescrved.http://www.cnki.nct邡鑫,史峥:晶圆缺陷检测与分类的卷积神经网络I I图检测结果示例图结束语而对图像上的缺陷检测和缺陷分类这两个问题,本文提出的改动后的检测算法能够精准、快速地从图像中检测出缺陷并同吋进行分类。得益于卷积神经网络良好的特征学习能力,该检测算法能够根据标记好缺陷位置和类型的数据自动学习特征,从而尽量避免人工千预,使算法具有较强的适应能力。参考文献徐姗姗刘应安徐昇基于卷积神经网络的木材缺陷识别山东大学学报工学版刘云杨建滨王传旭基于卷积神经网络的苹果缺陷检测算法电子测量技术江帆刘辉王彬等基于模型的图像识别计算机工程C1994-2017ChinaAcademicJournalElcctronicPublishinghOusc.Allrightsrescrved.http://www.cnki.nct

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • SVPWM_test仿真.zip
    【实例简介】SVPWM的仿真模型,对交流调速异步电动机的设计非常有参考价值。
    2021-12-12 00:42:15下载
    积分:1
  • stm32的foc库 2.0,全部未删减,内含用户手册
    stm32的foc库 2.0,全部未删减,内含用户手册, 包含示例,支持KEIL和IAR
    2020-12-12下载
    积分:1
  • MFC IP地址 网关 MAC地址获取
    MFC 编程获取 IP地址 网关 MAC地址等信息
    2020-12-05下载
    积分:1
  • 超高频RFID读写器开发包
    超高频RFID读写器开发包,UHF四通道RFID读写器
    2020-12-12下载
    积分:1
  • 六自由度机械臂三维仿真序(完整版)
    本人亲自编写六自由度机械臂三维仿真程序,调试通过。用户可以通过更改参数,可控制机械臂在空间中的位置,以及获得机械臂三维空间基本运动的实现。里面有详细的程序注释。
    2020-11-28下载
    积分:1
  • Computational Fluid Dynamics - Principles and Applications - J. Blazek.pdf
    classical book of Computational Fluid Dynamics
    2020-12-10下载
    积分:1
  • 有限元高精度理论(陈传淼)
    有限元高精度理论(陈传淼)有限元高精度理论(陈传淼)有限元高精度理论(陈传淼)
    2020-12-12下载
    积分:1
  • 设计--简易心电图仪设计
    包含了设计过程及测试分析,20多页本系统利用高精度通用运算放大器AD620对输入的心电信号进行放大,再进行高通滤波,滤去高频生物电,同时采用右脚屏蔽驱动电路,消除50Hz生物电和机器信号的影响,最后在数字示波器上得到清晰的心电波形。
    2021-05-06下载
    积分:1
  • 支持向量机进行预测(SVM)Matlab版.rar
    基于matlab的svm预测 代码
    2020-05-29下载
    积分:1
  • Spark开发指南
    Spark开发指南.pdf本书参考Spark官方文档和源码,通过本书你将精通Spark的安装、配置、开发、监控和调优。Apache SparkSpark是伯克利 APMLab实验室精心打造的,力图在算法( Algorithms)、机器( Machines)、人( People)之间通过大规模集成,来展现大数据应用旳一个平台,其核心引擎就是 Spark,其计算基础是弹性分布式数据集,也就是RDD。通过Spark, MPLab运用大数据、云计算、通信等各种源,以及各种灵活的技术方案,对海量不透明的数据进行甄別并转化为有用的信息,以供人们更好的理解世界。 Spark已经涉及到机器学习、数据挖掘、数据库、信息检索、自然语言处理和语音识别等多个领域。Sparp ecological environment陡着 spark的日趋完善, Spark以其优异的性能正逐渐成为下一个业界和学术界的开源大数据处理平台。随着 Spark1.1.0的发布和 Spark生态圈的不断扩大,可以预见在今后的一段吋间内, Spark将越来越火热。spak生态圈以Spa为核心引擎,以HDFS、S3、 Tachyon为持久层读写原生数据,以 Mesos、YARN和自身携带的Standalone作为资源管理器调度job,来完成spak应用程序的计算;而这些spak应用程序可以来源于不同的组件,如 Spark的批处理应用、 Spark Streaming的实时处理应用、 Spark sρL的即席查询、 BlinkDB的权衝查询、MLib或 MLbase的机器学习、 GraphX的图处理等等。更多的新信息请参看伯克利 APMLab实验室的项目进展htps:/ mplab. cS. berkeley. edu/projects或者 Spark峰会信息htp:/ spark-summit org。Spark Spark MLlib GraphXSQL Streaming(machine(graph)learningApache SparkSparkSpark是一个快速的通用大规模数据丛理系统,和 Hadoop MapReduce相比更好的容锆性和内存计算高速,在内存中运算100倍速度于 MapReduce易用,相同的应用程序代码量要比 MapReduce少25倍提供了丰富的AP支持互动和迭代程序Spark大数据平台之所以能日渐红火,得益于 Spark内核架构的优秀·提供了支持DAG图的分布式并行计算框架,减少多次计算之间中间结果O开销·提供 Cache机制来支持多次迭代计算或者数据共享,减少开销*·RDD之间维护了血统关系,一旦 RDD fail掉了,能通过父RDD自动重建,保证了容错性·, RDD Partition可以就近读取分布式文件系统中的数据块到各个节点内存中进行计算使用多线程池模型来减少task启动开稍shuffle过程中避免不必要的sor操作采用容错的、高可伸缩性的aka作为通讯框架SparkStreamingSparkstreaming是一个对实时数据流进行高通量、容锴处理的流式处理系统,可以对多种数据源(如Kdka、Fume、Twitter、zero和TCP套接字)进行类似map、 reduce、join、 window等复杂操作,并捋结果保存到外部文件系统、数据库或应用到实时仪表盘Sparkstreaming流式必理系统特点有捋流式计算分解成一系列短小的批处理作业将失败或者执行校慢的任务在其它节点上并行执行较强的容错能力(基于RDD继承关系 Lineage)使用和RDD一样的语义Spark SQLSpark SQL是一个即席查询系统,可以通过SQL表达式、 HiveQL或者 Scala dsl在 Spark上执行查询。Spark SQL的特点·引人了新的RDD类型 SchemaRDD,可以象传统数据库定义表一样来定义 SchemaRDD, SchemaRDD由定义了列数据类型的行对象构成。· SchemaRDD可以从RDD转换过来,也可以从 Parquet文件读入,也可以使用 Hive QL从Hve中获取·在应用程序中可以混合使用不同来源的数据,如可以将来自 HiveQL的数据和来自sQL的数据进行jn操作。·内嵌 catalys优化器对用户查询语句进行自动优化MLlibMLib是Spak实现一些常见的机器学习算法和实用程序,包括分类,回归,聚类,协同过滤,降维,以及底层GraphXGraphX是基于 Spark的图处理和图并行计算AP。 GraphX定义了一个新的概念:弹性分布式属性图,一个每个顶点和边都带有属性的定向多重图;并引人了三种核心RDD: Vertices、 Edges、 Triplets;还开放了一组基本操作(如 subgraph,joinvertices, and mapReduce Triplets),并且在不断的扩展图形算法和图形构建工具来筒化图分析工作生态圈的应用Spark生态圈以 Spark为核心、以RDD为基础,打造了一个基于内存DAG计算的大数据平台,为人们提供了一栈式的数据处理方奚。人们可以根据不同的汤景使月主要应用场景用户曲像的建立用户异常行为的发现社交网络关系洞察用户定向商品、活动推荐spak运维相关安装配置、监控等,请求参考《 Spark运维实战》graphiteum install -y bitmap bitmap-fonts-compat Django django-tagging fontconfig cairo python-devel python-memcachedpython-twisted pycairo mod python python-Idap python-simplejson memcached python-zope-interface mod wsgipython-sqlite2Spark BaseSpark开发环境Spark本身是由 scala语言开发的,提供了三种语雷接口: Scala、Java、 Python。根据自己的喜好可以使用相应语言的开发工具。本书使用 scala语言做为开发Spak应用的语,采用 Eclipse为主要的开发工具主要介绍了两个流行的开发工貝: Eclipse、 Intell IDEA。JDK安装配置下载官方网址:htp/www.oracle.com/technetwork/javaljavase/downloads/jdk7-downloads-1880260hml选择好操作系统版本,32位操作采统选择带j586的安装文件;64位操作系统选择菅×64的安装文件。Linux操作系统推荐下载 tar. gz格式的安装文件, Window当然也只有exe格式的文件。Linux下安装解压tar -zxvf jdk-7ug-linux-1586. tar. gz-C/opt/In-/opt/jdk170_09 /opt/jdk设置环境变量用ⅵ编辑配置文件:/etc/ profileexport JAVA HOME=/ pt/jdkexport CLASSPATH=$JAVA HOME/lib/dt jar: SJAVA HOME/lib/tools. jarexport PATH= $JAVA HOME/bin: s PATH保存退出按Esc然后输入Wq使配置生效source /etc/profileWindows下安装选择好操作系统版本是32还是64,解压双击进行安装一路下一步,便可安装成功。设置环境变量测试是否成功命合行输人Java -versIon如果出现下面提示说明成功
    2020-12-01下载
    积分:1
  • 696518资源总数
  • 106155会员总数
  • 8今日下载