登录
首页 » Others » 多目标pareto最优解搜索算法

多目标pareto最优解搜索算法

于 2021-05-06 发布
0 288
下载积分: 1 下载次数: 4

代码说明:

多目标优化是指在约束条件下有两个或两个以上优化目标,且这些目标相互矛盾,一个目标往往以牺牲另一个目标为代价,故多目标优化问题存在多个最优解,统称为pareto最优解。

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • MIMO/MASSIVE MIMO 信号检测算法matlab仿真
    其中包含了三种线性信号检测算法MRC,ZF,MMSE和两种非线性信号检测算法ZF-SIC和MMSE-SIC,实测可用
    2020-12-06下载
    积分:1
  • 讯飞语音转文字demo
    讯飞语音转文字,识别率很高
    2021-05-07下载
    积分:1
  • 基于高光谱成像的蓝莓内部品质检测 特征波长选择方法研究
    在特征波长选取方面有一些创新,可以作为参考。在特征波长选取方面有一些创新,可以作为参考。(基于高光谱成像的蓝莓内部品质检测特征波长选择方法研究古文君1 ,田有文 1* ,张芳1 ,赖兴涛 1 ,何宽1 ,姚萍1 ,刘博林 2)586-482016620010~15mm0.8~2.3g。fone3:(InSpector V10E, Spectral InFinland)1392pix×1040pixCCDL CCD2(IGV-B141OM, IMPERX Incorporated, USA), 150W1. CCD Camera; 2.Spectrometer; 3.Shot; 4. Light source; 5. Samples(3900 Illuminatior, Illumination Tech6.Translationplatform7.Lightsourcecontroller;8.computernologies inc.,USA)、(IRCP0076-19. Translation platform controllerCOM,)、(120cm×50cmx(DELL VoStro 5560D-1528Figure 1 Schematic diagram of hyperspectral imagingcmsystem400~1000nm,4722.8nmRRGY-4(10mm)(DBR45(successive projections algorithm, SPA(stepwise multiple linear regression, SMLR)(SPA)(SMLR)SPASPASMLRSPA-SPA、SMLR_SMLR、SPA- SMLRSMLR-SPA21994-2018ChinaAcadcmicJournalElcctronicPublishingHousc.Allrightsrcscrved.http://www.cnki.nct5871.6BP(error back propagation)BP17(correlation coeffiient of calibration, Re)(root mean square error of calibration set, RMSEC)correlation coeffiient of pre-diction, Rp)(root mean square error of prediction set, RMSEP)ENVI 4.8(Research System Inc, ), MATLAB 2014a(The Math Works Inc)、TheUnscrambler9.7、 Excel2010(Ⅵ icrosoftdgle banddWcvef.BP models for soluble solidsThe selected characteristic wavelengthCurve of relative reflectanceExtract the region of interescontent and firmness prediction2figure 2 Flow chart of data processing280mm,68ms,28mm·s-。99%202.2600nm600nm2b2c)21994-2018ChinaAcadcmicJournalElcctronicPublishingHousc.Allrightsrcscrved.http://www.cnki.nct5884823(2f)BPSavitzky-Golasavitzky -golayTable 1 The effect of different spectra preprocessingCalibration setPredictioSpectrum typeRMSECRMSEPOriginal spcctrum0.933/0.9230.3510.4040.9200.9100.508/0.319MSCThe spectrum after MSC processing0.940/0.9450.56lO.3120.9190.9320.516/0.282SNThe spectrum after SNV processin0.93709340.60210.24309220.9010.6320.462Savitzky-golayThe spectrum after Savitzky-Golay processing 0.955/0.9550.3240.2410.951/0.9490.400/0.2782.5SPA-SPA SMLRSMLR SPA-SMLR SMLR-SPASPA-SPASPASavitzky-GolaySPATable 2 The results of multi-stage characteristic wavelength selection methodnmCharacteristie wavelength selection methodSPA-SPA452,455,470,482,490,785,893,912,921,942,950455,470,482,785,893.912SMLR-SMLR457,508,516,534,543,51,556,568,712,720.774,778508,534,543,712,720,774SPA-SMLR452,455,470,482,490,785,893,912,921,942,950452,470,482,490,893,912SMLR-SPA457,508,516,534,543,551,556,568,712,720,774,78534,7202.6Savilzky-gola(FS)392SPA-SPASMLR-SMLRSMLR-SMLRSMLR-SPABPBP0.001500021994-2018ChinaAcadcmicJournalElcctronicPublishingHousc.Allrightsrcscrved.http://www.cnki.nct589BPBPSPA-SPARp RMseP0.9520.391°Brix,RpRMSEP0.9530.234BrixTable 3 Detection results of soluble solid content and firmness of blueberry based on different multi-stagecharacteristic wavelength selection methodsCalibration setPrediction setCharacteristic selection method Wavelength numberRMSECRMSEP3929550.9550.324/0.2410.9510.9490.400/0.278SPA-SPA0.9590.9560.3180.1530.9520.9530.391/0.234SMLR-SMLR0.9560.9340.414/0.243912109020.559/0.349SPA SMLR0.828/0.8581.3670.58582208091.440/0.719SMLR- SPA20.958/0.9360.402/0.3359320.9280.435/0,4041387nm1229nm91.5%BPRRMSEP0.904215.163lBP3Rv0.84V0.94Rv0.83,SEV0.63。400-1000nmSavitzky-GolayBPSPA-SPASPA-SPA21994-2018ChinaAcadcmicJournalElcctronicPublishingHousc.Allrightsrcscrved.http://www.cnki.nct59048[1 KADER F,ROVEL. B Fractionation and identification of the phenolic compounds of highbush blueberries(Vaccinium corymbosumLUJ].Food Chemistry, 1996,55(1): 35-40「J,2012,33(1):340-342,2017,38(2):301-305.[4 MENDOZA F, LU R, ARIANA D,et al. Integrated spectral and image analysis of hyperspectral scattering data for prediction ofple [ruil firmness and soluble solids conlenl[J] Poslharvesl Biology and Technology, 2011, 62(2: 149-160[5 SUN M J, ZHANG D, LIU L,et al. How to predict the sugariness and hardness of melons a near-infrared [J]. Food Chemistry,2017,218(3:413-42116 SIEDLISKA A, BARANOWSKI P, MAZUREK W, ct al. Classification models of bruise and cultivar detection on the basis of hy-perspectral imaging data[J]. Computers and Electronics in Agriculture, 2014, 106: 66-74[7 LIU D, SUN D W, ZENG X N, el al. Recenl aDvances in wavelength seleclion lechniques for hyperspectral image processing inthe food industry[J]. Food Bioprocess Technol, 2014, 7: 307-323[8 ZHANG C, GUO C T, LIU F,et al. Hyperspectral imaging analysis for ripeness evaluation of strawberry with support vector ma-chine[j] Journal of Food Engincering, 2016, 179: 11-18[9J,2016,47(5:634-6402009,29(:1611-1615201536(12)171-17612]J,2012,32(11:3093309[13] LI B C, HOU B L, ZHANG D W,et al. Pears characteristics (soluble solids content and firmness prediction, varieties) testingInethods based on visible-near infrared hyperspecTral imaging[J]. OpLik, 2016, 127: 2624-2630[14] FAN S X, ZHANG B H,LI J B, et al. Prediction of soluble solids content of apple using the combination of spectra and textural features of hyperspectral reflectance imaging data[J. Postharvest Biology and Technology, 2016, 121: 51-61[15 RAJKUMAR P, WANG N,EIMASRY G, et al.Studies on banana fruit quality and maturity stages using hyperspectral imaging[ JIJournal of Food Engineering 2012, 108: 194-200,2015,36(16):10172015,35(8:2297-2302[18]WANG N,2007,23(2:151-155.「192008,39(5):91-9320」201536(10:70-74.[21] WU D, SUN D WAdvanced applications of hyperspectral imaging technology for food quality and safety analysis and assess-ment a review part T[J]. Innovative Food Science and Emerging Technologies, 2013, 19(4): 1-14J2014,35(8:57-61BP,2012.124」13,44(2):142-146.25],201523(6:1530-1537M011:41-48.[27,2013,24(10:1972-19762010,30(10):2729-2733?1994-2018ChinaAcadcmicJournaleLcctronicPublishingHousc.Allrightsreservedhttp://www.cnki.nct
    2020-12-07下载
    积分:1
  • 小波变换提取基音频率 Matlab
    Matlab代码:在小波变换后用近似系数的峰值获取该帧的基音频率
    2020-12-04下载
    积分:1
  • 项目案例:制作1号店网站
    制作1号店网站1.首页2.搜索列表页3.商品详细页4.登录页5.注册页
    2020-12-12下载
    积分:1
  • 图像匹配滤波器Matlab序 附注释
    图像匹配滤波器Matlab程序 附注释 图像匹配滤波
    2020-12-10下载
    积分:1
  • 亚像素边缘提取MATLAB码
    matlab亚像素边缘提取代码,供学习!
    2020-12-11下载
    积分:1
  • 非常详细步进电机控制原理图,和完整的控制序,安装PROTEUS后就可以看到仿真的结果
    本文介绍了单片机控制步进电机的系统。在电气时代的今天,电动机一直在现代化的生产和生活中起着十分重要的作用。步进电机是机电控制中一种常用的执行机构, 其原理是通过对它每相线圈中的电流和顺序切换来使电机作步进式旋转。本系统的硬件组成主要有:51系列单片机、L298N驱动电路、直流电压源等。同时对系统设计中所用到的一些软件都进行了介绍。本系统用51系列单片机和L298N电机驱动芯片并加入了键盘来控制步进电机实现转向、转速等。系统中使用的是永磁式二相步进电机,相应的驱动和控制电路对于其整体性能起着非常重要的作用。经系统调试,能够很好的控制步进电机的正反转、加减速、急停,从而达到预期目的。整个系统具
    2021-05-06下载
    积分:1
  • MATLAB在电气工中的应用实例
    《MATLAB在电气工程中的应用实例》为普通高等教育“十一五”国家级规划教材配套教材。全书分为两篇共9章,主要介绍数值分析、自动控制、信号与系统、电子电路、电机及其控制、电力电子装置和电力系统中有关MATLAB的建模方法和分析技巧。《MATLAB在电气工程中的应用实例》既介绍了一些典型模块库中的功能模块的使用技巧、构建方法和设计技术,也讲解了电气工程中所涉及的一些重要电路的计算机仿真技术,使初学者能够快速完成各个单元电路的分析、仿真和筛选,包括电气参数的优选和整个功能电路的设计、配合以及全部电路的连接与调试
    2020-12-11下载
    积分:1
  • ansys workbench 柔性结构动力学分析 教
    ansys workbench 柔性结构动力学分析 教程
    2020-07-03下载
    积分:1
  • 696518资源总数
  • 105540会员总数
  • 37今日下载