晶圆缺陷检测与分类的卷积神经网络
晶圆缺陷检测与分类的卷积神经网络;针对晶圆检验时扫描电镜图像的缺陷检测和缺陷分类两问题,采用了“ ZFNet”的卷积神经网络来分类晶圆缺陷,并基于该分类器实现了一种“基于块的卷积神经网络”缺陷检测算法。为了提高准确率和加快速度,又改动“更快的区域卷积神经网络”实现了另一种检测算法。第卷第期邡鑫,史峥:晶圆缺陌检测与分类的卷积神经网络ZENet classifierDarker ImIn.ril” HumpBitel检测算法示意图在训练检测器时,数据集是检测器原始尺寸的图像,且包含标记好的缺陷区域和类型。我们结构通过·系列数据扩张操作,得到组数据,随机选取相比于检测算法主作为训练集,作为测试集。要从以下三方面进行了针对性的改进算法中需要优化的参数有滑动窗口尺寸滑()针对重复计算卷积的缺点,采用先动步幅、概率阙值、面积阙值,由于无法求出统一计算特征图,再按)进行映射各参数与检测结果的明确关系式,所以采用遍历法优化参截取的办法。如图,先通过卷积网络(数。因为检测到的缺陷尽量正确和尽量检测到所有缺陷是)对输入图像计算得到其特征图,因为在输入图像矛盾的,故以精确率和召回率的调和平均值作为优上的都能映射到特征图上,所以从输入图像上按化目标,也可根据实际需要调整两者权重满足不同侧重。割取图像进行卷积运算可以替代为直接从特征图上按测试结果映射后的范围割取,从而避免多次重复计算卷积。由于用训练好的检测模型对测试集检的大小形状不·,而全连接层的神经元连接数是固定的,测,计算模式下每张图大概耗时如果检测到的缺所以对割取得到的子特征图,通过层次采样到统陷与标准答案的且类型相同,则判为正确,否尺寸以连接到全连接层。则判为错误。得到结果如表,计算得:laut Image精确率Feature Map召回率ROI其屮正确缺陷的平均表检测器测试结果数量正确错误network有缺陷(正类)图映射示意图从检测结果来看该算法基本实现∫对图像上晶圆()针对滑动窗口尺寸单·的缺点,增缺陷的检测和分类,但是值较低,缺陷检测位置不加了滑动窗口的尺寸类型,并且增加由一个全卷积网络准确,检测耗时较长,分析其原囚如下)组成的()检测出错的数据中,缺陷较大的类型易判断错,)来预判断是否有缺陷。本文采用面积缺陷较小的容易被漏掉,说明只使用一种尺寸的滑动框很分别为,长宽比分别为、共难适应尺寸变化范围较大的缺陷种尺寸的滑动窗口,依次计算其中有缺陷的概率,再从中)滑动框步幅减小则算法耗时平方倍增加,而步幅筛选出一定数量最有可能有缺陷的区域,进行非极大值抑过长造成缺陷概率分布图分辨率较差,从而检测到缺陷位制(),最后得到一定数置准确度较差量的候选区域。()相邻滑动框都有大量重叠,所以每个区域都被多()针对缺陷检测位置准确度差的缺点,次重复送入计算卷积,导致算法耗吋较长。在全连接层后连接一个边界回归层在与上述检测算法相似的图像目标检测领域,近来出用来修正缺陷位置,该回归层与分类层并列。现的很好的克服了以上缺点并取得了很好的针对本文的缺陷检测问题,直接套用标准效果,所以下面介绍如何通过改动实现品圆并不能解决问题。因为判断晶圆的缺陷类型通常需缺陷的检测与分类。要结合缺陷区域周围的图形信息,而在预判断是否有C1994-2017ChinaAcademicJournalElcctronicPublishinghOusc.Allrightsrescrved.http://www.cnki.nct计算机工程年月日缺陷吋还进行了边界回归。虽然更加准确的给出缺陷的位()将原尺寸为的图像调整为置,但送入检测网络的特征儿乎不包含缺陷周围图肜信息,使得滑动窗口尺寸能够适应缺陷大小的变化范围,也可以导致缺陷分类不准。故木文对标准徹了一些根据实际情况来具体调整。改动:得到缺陷检测算法如图,卷积网络(()将改为只判断滑动窗口内是否有缺陷,而,)将输入图僚转换成多种特征图;根据不进行边界回归,也就是只计算所有滑动窗口有缺陷的概特征图从滑动窗口中选出最有可能存在缺陷的率,选取可能性最大的个,做非极大值抑制,再选出层根据特征图中抽取出对应特征组成特可能性最大的个进行检测。征向量;检测网络()根据特征向()将卷积层的尺寸加大为,加大感受野量判断缺陷类型,并进行边界回归;最后通过和概率),从而在判断滑动框內是否有缺陷吋能参阈值对候选缺陷进行过滤即可得到最终缺陷。考更多的周围信息。Detection NetworkonFolutionnl actorSoftmaxRuI Puling liver,e Prop卟 edMS+PrubilitessionInput Image 1024*1024Fully 10 dyercrectCcrvchrionalLaver size 747图检测算法示意图模型训练和平均值作为优化目标,并且使用相同的训练集和图中的检测算法也是基于架构实现,因为卷测试集积网络提取的特征类型对相似普遍有效,故其卷积网络的测试结果参数是直接迁移第章分类器的卷积层参数。但是用训练好的检测模型对测试集检测,和的参数则需要通过方法进行训练,标准计算模式下每张图大概耗时,采用相同判定标准,提供了分开和联合两种训练方式。为了节约得到检测结果如表(其中负类总数与表中总数不同是因时间,本文采用联合训练方式,并结合缺陷检测问题的实为同一张图屮可能检测到多个缺陷),计算得际情况调整超参数精确率在训练时,对每张输入图像,要计算的滑动窗口召回率数量庞大(种尺寸的滑动窗口,滑动步幅)。所以从中随机抽取个作为训练集,其中正例其中正确缺陷的平均负例,且正例占比不超过。分类器采用表检测器测试结果损失函数数量正确错误在训练时,设置提供个,从中随有缺陷(正类)机选取个作为训练集,其屮正例无缺陷(负类)负例,且正例占比不超过。另外设置学从结果来看该算法各方面都优于检测算习率分类器采用损失函数,而边界回法和值更高说明检测检测缺陷类型正确归采用函数。且位置准确,而且速度也大大提高(检测一张图像耗时从为了与检测算法对比,在最后通过遍历法缩小到)。如图为检测缺陷示例,共中标注了缺陷优化和概率阈值时,同样以精确率和召回率的调位置、类型和对应概率C1994-2017ChinaAcademicJournalElcctronicPublishinghOusc.Allrightsrescrved.http://www.cnki.nct邡鑫,史峥:晶圆缺陷检测与分类的卷积神经网络I I图检测结果示例图结束语而对图像上的缺陷检测和缺陷分类这两个问题,本文提出的改动后的检测算法能够精准、快速地从图像中检测出缺陷并同吋进行分类。得益于卷积神经网络良好的特征学习能力,该检测算法能够根据标记好缺陷位置和类型的数据自动学习特征,从而尽量避免人工千预,使算法具有较强的适应能力。参考文献徐姗姗刘应安徐昇基于卷积神经网络的木材缺陷识别山东大学学报工学版刘云杨建滨王传旭基于卷积神经网络的苹果缺陷检测算法电子测量技术江帆刘辉王彬等基于模型的图像识别计算机工程C1994-2017ChinaAcademicJournalElcctronicPublishinghOusc.Allrightsrescrved.http://www.cnki.nct
- 2021-05-06下载
- 积分:1
史上最全最详细的flink 中文教程(一千多页pdf).pdf
最全最详细的flink 中文教程,详细介绍各个接口,并附带demo(一千多页pdf)最全最详细的flink 中文教程,详细介绍各个接口,并附带demo(一千多页pdf)执行配置1.5.7.1程序打包和分布式执行1.5.7.2并行执行1.5.73执行计划1.5.74重启策略1.5.7.5类库158FlinkCeP-Fink的复杂事件处理1.5.8.1风暴兼容性Beta158.2Gelly Flink Graph AP158.3图AP1.5.84迭代图处理1.5.8.4.1类库方法1.584.2图算法1.5.8.4.3图形生成器1.5.844二分图1584.5FlinkML- Flink的机器学习1.5.85快速入门指南1.5.8.5.1如何贡献5.8.5.2交义验证1.58.5.3Distance metrics5.8.54K-Nearest Neighbors关联158.55MinMax scaler1.5.8.5.6Multiple Linear regression1.5.8.5.7在管道的引擎盖下看158.5.8Polynomial Features158.59随机异常值选择1.5.8.5.10Standard scaler158.5.11Alternating Least squares1.5.8.5.12SVM using COCoA1.58.5.13最佳实践1.59AP迁移指南1.5.10部署和运营集群和部署1.6.1独立群集1.6.1.1YARN设置1.6.1.2Mesos设置1.6.1.3Kubernetes设置1.6.14Docker设置1.6.1.5亚马逊网络服务(AWS)1.6.1.6Google Compute Engine设置1.6.1.7MapR设置1.6.1.8Hadoop集成1.6.19JobManager高可用性(HA)1.6.2状态和容错16.3检查点1.6.3.1保存点1.6.3.2状态后台1.6.3.3调整检查点和大状态1.6.3.4配置1.64生产准备清单1.6.5命令行界面166Scala REPl1.6.7Kerberos身份验证设置和配置168SSL设置6.9文件系统1.6.10升级应用程序和Fnk版本1.6.11调试和监控度量1.7.1如何使用日志记录1.7.2历史服务器1.7.3监控检查点1.74监测背压1.7.5监控 REST AP1.7.6调试 Windows和事件时间1.7.7调试类加载1.7.8应用程序分析1.7.9Flink Development1.8将 Flink导入|DE1.8.1从 Source建立Fink8.2内幕组件堆栈1.9.1数据流容错19.2工作和调度19.3任务生命周期194文件系统19.55Apache Flink文档Apache Flink文档译者: flink. sob.cn在线阅读●PDF格式EP∪B格式●MOB格式代码仓库本文档适用于 Apache Flink17 SNAPSHOT版。这些页面的建立时间为09/08/18,中部标准时同07:53:00°Apache Flink是一个用于分布式流和批处理数据处理的开源平台Fnk的核心是流数据流引擎’为数据流上的分布式计算提供数据分发’通信和容错。 Flink在流引擎之上构建批处理’覆盖本机达代支持,托管内存和程序优化。第一步概念∶从Fink的教据流编程模型和分布式运行时环境的基本概念开始。这将有助于您了解文档的其他部分·包括设置和编程指南σ我们建议您先闖读这些部分教程:o实现并运行 Data strean应用程序o设置本地Fink群集编程指南:您可以阅读我们关于基本AP|概念和 Data Stream A門或 Data Set APl的指南’以了解如何编写您的第一个Fink程序。部署在将Fink工作投入生产之前,请阅读生产准备清单发行说明发行说明涵盖了Fink版本之间的重要更改。如果您计划将Fink设置升级到更高版本,请仔细阅读这些说明。Fink1.6发行说明Fink1.5发行说明。外部资源6Apache Flink文档● Flink Forward: Flink forward网站和 You tube上提供了以往会议的讲座。使用 Apache Flink进行强大的流处理是一个很好的起点●培训∷数据工匠的培训材料包括幻灯片·练习和示例解決方案。·博客: Apache Flink和数据工匠博客发布了有关Fink的频繁深入的技术文章概念概念数据流编程模型数据流编程模型译者: flink. sob.cn抽象层次Flink提供不同级别的抽象来开发流/批处理应用程序SQLHigh-level LanguageTable AplDeclarative dslDataStream/Data Set APICore aplsStateful Stream ProcessingLoW-level building blockstreams, state, [event] time)●最低级抽象只提供有状态流。它通过卩 rocess Function嵌入到 Datastream aF丨中。它允许用户自由处理来自一个或多个流的事件,并使用一致的容错状态此外,用户可以注册事件时间和处理时间回调,允许程序实现复杂的计算实际上,大多数应用程序不需要上逑低级抽象,而是针对 Core a叫编程,如Data stream AP(有界/无界流)和 Data set ap(有界数据集)。这些流畅的A門提供了用于数据处理的通用构建坎’例如各种形式的用户指定的转换’连接’聚合’窗口’状态等。在这些AP丨中处理的数据类型在相应的编程语言中表示为类低级尸 rocess function与 Data stream A尸/集成’因此只能对某些算子操作进行低级抽象。该数据集A尸隈提供的有限数据集的其他原语,如循环/迭代。●该 Table ap是为中心的声明性DSL表,其可被动态地改变的表(表示流时)。该 Table a門遵循(扩展)关系模型:表有一个模式连接(类似于在关系数据库中的表)和A門|提供可比的算子操作·如选择,项目,连接,分组依据’聚合等 Table a門程序以声明方式定乂应该执行的逻辑算子操作,而不是准确指定算子操作代码的外观。虽然 Table ap丨可以通过各种类型的用户定义西数进行扩展’但它的表现力不如 Core AP’但使用更简洁(编写的代码更少)。此外, Table a門l程序还会通过优化程序·在执行之前应用优化规则。可以在衣和 Data strean/ Data set之同无缝转换’允许程序混合7 ble aP以及Data Stream u Data Set API数据流编程模型Flink提供的最高级抽象是SQL。这种抽象在语义和表达方面类似于7ab/eA門·但是将程序表示为SQL查询表达式。在SQL抽象与 Table apl紧密地相互作用’和SQL查询可以通过定义表来执行7ab/eA尸程序和数据流Flink程序的基夲构建块是流和转换。(请注意,Fink的 Data set a|中使用的Data Set也是内部流-稍后会详细介绍。)从概念上讲·流是(可能水无止境的数据记录流’而转换是将一个或多个流作为一个或多个流的算子操作。输入’并产生一个或多个输出流。执行时’Fink程序映射到流数据流’由流和转换算亍纽成σ毎个数据流都以一个或多个源开头,并以一个或多个接收器结東。数据流类似于任意有向无环图(DAG)°尽管通过迭代结构允许特殊形式的循环,但为了简单起见’我们将在大多数情况下对此进行掩饰。Datastream lines env. addsourceSourrenew FlinkKafkaconsumer>(.)Datastream Event> events =lines. map((line)-> carse(line)了FBs∫n?ato胃Datastrearrs-atis-.cs> statskerby (id"!fransformationtimewindow (Time, seconds(10)apply(new MyWNindowAggregationFurction();stas. addsink(new Rolling sink(path),SinkLsourceT! ansforratio门sinkperatorOperatorsOperatorkey By(/Sourcemap() window()SinkapplystreamStreaming Datarow通常,程序中的转換与数据流中的算子之同存在一对一的对应关系。但是,有时一个转换可能包含多个转换算子源流和接收器记录在流连接器和批处理连接器文档中。 Data Stream算子和 Data Set转换中记录了转换。10
- 2020-11-04下载
- 积分:1