登录
首页 » Others » SIM868V2.0资料

SIM868V2.0资料

于 2021-05-07 发布
0 252
下载积分: 1 下载次数: 1

代码说明:

SIM868模块资料大全,包括视频、调试工具、使用手册等

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 基于ssh2的简单登陆注册系统
    基于ssh2的简单登陆注册系统,很经典,适合初学者
    2020-11-29下载
    积分:1
  • 新年表达爱意网页模板html
    新年表达爱意网页模板html新年表达爱意网页模板html新年表达爱意网页模板html新年表达爱意网页模板html
    2020-11-29下载
    积分:1
  • 关于Rayleigh和AWGN信道的BPSK仿真
    关于Rayleigh和AWGN信道的BPSK仿真
    2020-12-06下载
    积分:1
  • 64QAM调制原理.doc
    【实例简介】 64QAM调制原理   (1)基于  DVB-C的有线数字电视 基于DVB-C的有线数字电视采用了频分(8MHz与8MHz之间)与时分(8MHz之内)复用相结合的方法在一个物理频道上可传输6~8套标准清晰度(码率4Mb/s对应40多万像素)电视节目或2套高清晰度(码率18Mb/s对应200多万像素)电视节目。具有图形质量好,可达到DVD的图象质量。传输节目的套数多(可上百套),而且还可像手机一样移动接收且无重影。同时有线数字电视信号的抗干扰能力也模拟电视信号强(源于信道编码),此外有线数字电视还具有模拟电视无法比拟的条件接收(可从技术手段上彻底解决收费与非法偷接信号的问题)和电子节目指南(EPG)等一系列优点。由于有线数字电视系统远比模拟电视系统复杂,其关键技术也比模拟电视好,主要体现:信源编/解码、信道编/解码、传输复用、64QAM正交幅度调制、条件接收(CA)系统、中间件技术和大屏幕显示技术等。我们知道模拟电视的三大技术指标是C/N、CTB和CSO,而有线数字电视系统的主要技术指标除了这3项之外还有:采样频率、量化比特率、数码率(数码率=采样频率*量化比特率)、误码率、相位抖动和调制误差率(MER)等。需要说明的是模拟电视与数字电视的载噪比(C/N)的定义不同:对模拟电视而言C/N的定义是图象载波电平的有效值与规定噪声带宽(5.75MHz)的噪声电平的均方根值之比。而数字电视的C/N的定义却是己调制信号的平均功率与规定噪声带宽(6.95MHz)内的噪声的平均功率之比。   (2)常用的数字调制方式 所谓数字调制是指用数字的基带信号对正弦载波信号的某些参数(幅度、频率和相位)进行控制,使之其随基带信号的变化而变化。数字调制有幅移键控(ASK)、频移键控(FSK)和相移键控(PSK)三种基础形式。当然也可由这三种基本形式组合成联合键控,例如mQAM调制就是幅度和相位的联合键控。此外,还有编码正交频分复用(COFDM),X进制残留边带调制(美国数字电视使用,其中8VSB相当于相当于64QAM,16VSB相当于相当于256QAM)等。数字调制与模拟调制从本质上讲没有什么区别,只不过模拟调制(以调幅为例)对载波的调制是连续的(信号本身就是连续的),同时在收端对载波信号的调制参量的幅度也是连续地估值。而数字调制则对载波的调制不是连续地估计。而数字调制则对载波的调制不是连续的,仅是若干个离散的值,在收端只对载波信号的离散调制参量的幅度进行检测。   衡量数据信号的载波调制有两个重要的指标,一是频带利用率(调制效率,单位频带内所能传输的比特数);二是功率利用率(在满足误码率的条件下所需功率越小,功率利用率越高)。我们知道数字通信系统的研究的目标是在最小的信道带宽内,以最低的差错率和最低的信号功率来传输最大的数据量。由于图象信号压缩编码后的码率仍是4M/s(标清),为了在有限的带宽内传输更多的消息量,通常既要求调制效率较高,同时也要求功率利用率较高,而mQAM因其是抑制了载波的调制,具有较高的功率利用率,刚好满足这一点。因此,基于DVB-C有线数字电视采用mQAM调制方式,64QAM b/s是高效的二维调制,理论上调制效率可达6b/s,但考虑滚降和信道编码后实际调制效率为4.75b/s。 (3) 64QAM调制     我们知道单独使用幅度或相位携带信息时,不能充分利用信号平面,这可从星座图上直观地看到,对mASM调制而言,星座点分布在一条轴线上,mPSM调制的星座点分布在圆周上,同时伴随着m的增大其星座点的距离也跟着减小,造成抗干扰能力的下降。为解决这一问题mQAM调制应运而生,它是一种二维调制,同时具备较高的调制效率和较好的功率利用率。mQAM调制可充分利用信号平面,星座点的分布呈块状。 mQAM调制既可以用无线信道,也可以用有线信道。由于有线数字信道以HFC网络为传输媒介,信道的条件较好,m的数值可选的稍大一些。一般而言m的数值选择要兼顾调制效率和信道条件这两方面因素,故基于DVB-C的有线数字电视选用64QAM调制。 64QAM调制是基于DVB-C的有线数字电视的核心技术,所谓QAM是用两个独立的基带信号对两个相互正交的同频载波进行抑制载波的双边带调制。在mQAM中m叫状态数,通常取值为16、32、64、128和256,状态越低(意味着星座点之间的空间距离远)抗干扰能力强,但调制效率较低(携带的消息量少),反之状态数越大(意味着星座点之间的空间距离近)抗干扰能力弱,但调制效率较高(携带的消息量大,同时要求信道质量也越高,即要求优质的光缆电缆和各种有源无源器件直至优质的施工质量)。有线数字电视DVB-C标准中规定使用的是64QAM,需要特别注意的是64QAM的名称虽为正交幅度调制,但实际上却是所谓的振幅-相位联合键控,这是一个有线数字电视中非常重要的概念,正因为QAM相位调制(依靠不同的相位携带不同的消息),才导致了有线数字电视对HFC传输网络质量的要求高于模拟电视。64QAM中的64个状态(星座点)上的每个星座点的解调要靠幅度和相位共同决定,64QAM中采用的是8进制(或8电平,提高效率),每个星座点由6比特(6位二进制组成,从000000~111111),所有的信息(视频码流、音频码流、和辅助数据码流)都在每一个星座点中的6比特中。 (3.1)64QAM调制的原理 所谓mQAM是用两个独立的基带信号对两个相互正交的同频载波进行抑制载波的双边带载波。设ml(t)和mQ(t)是两个独立的基带信号,cosωct和sinωct是相互正交的载波,则发送端形成的正交振幅调制信号为:     e0(t)=mI(t) cosωct mQ(t) sinωct 其中:cosωct为同相信号或I信号,sinωct是正交信号或Q信号。以64QAM为例,经2~8电平转换后可得到-1、-3、-5、-7、 1、 3、 5和 7共8个电平,则调制器I(正交)输出的8个信号为 7sinωct、 5sinωct、 3sinωct、 1sinωct、-1sinωct、-3sinωct、-5sinωct、-7sinωct;调制器Ⅱ(同相)输出的8个信号为: 7cosωct、 5cosωct、 3cosωct、 1cosωct、-1cosωct、-3cosωct、-5cosωct和-7cosωct。两路己调信号相加共有64个不同的组合,这样便形成64QAM的星座图。图Ⅰ为mQAM调制原理示意图。 由64QAM调制原理知其调制流程如下: (1)                                  输入多路复用的TS(系统复用器完成,一般而言一台复用器对应一台64QAM调制器),首先进行串并变换,即将一路串行码流变成二路并行码流,速率减半,码流为二进制; (2)                                  扰码频谱扩散(扰码是为了避免DVB-C数据帧结构中的长连“1”或长连“0”的出现,以便在接收端恢复时钟信号。MPEG-2传输复用包经过扰码处理后,其“1”或“0”在时间上变得均匀分布,此外扰码频谱扩散还能保证星座图中各点的能量密度一致); (3)                                  信道编码(外码,码型为RS,纠错FEC,为对付突发干扰引入外交织,内交织在188字节中进行,外交织包含RS编码在204字节中进行); (4)                                  字节映射成符号,即完成电平变换或称为进制变换(2电平变为8电平或2进制变为8进制,首先进行比特到符号的转换,如64QAM是将8比特数据转换成6比特为一组的符号); (5)                                  Nyquist滤波信号成型(即基带成形,在64QAM调制之前对I、Q信号进行升余弦平方根滚降滤波); (6)                                  多电平正交幅度调制64QAM产生中频信号,先由振荡器产生同相的载波,然后经移相90度后产生正交的载波,同时调制完成后将抑制载波,因为载波不携带任何信号; (7)                                  并串变换,既将二路并行码流变成一路串行码流,速率增加一倍,码流已不是二进制,而是变为8进制的符号; (8)                                  上变频形成RF信号输出。    这里的幅移键控本质上是一个乘法器,它将数据脉冲信号与正弦载波信号相乘,输出为已调信号。换言之,幅移键控即数字脉冲为1时,对应已调波有输出1信号,反之当幅移键控的数字脉冲为0时,对应已调波信号输出0信号。可见幅移键控实际上是将基带信号的频谱在频率轴上进行搬移。    64QAM调制器共有44种不同的相位,64种不同幅度,星座图中64个状态(000000~111111)中每一个状态的幅度和相位都是一一对应的关系,但由于存在着一些相位相同的星座点,这些点的判决由不同幅度和相同的相位共同决定,其他判决点由不同幅度和不同相位共同决定。     盲均衡(时域均衡)即指不需要训练信号,仅利用接收信号本身的先验信息便可均衡信道特性,使均衡器的输出信号尽量接近发送信号。 mQAM调制器的振荡器有传统的模拟振荡器和现代的数字振荡器之分,进口mQAM调制器一般为数字振荡器,其性能远优于模拟振荡器。基于数字振荡器的mQAM具有完美的正交调制、没有幅度不平衡、载波完全抑制和非线性失真等优点。 mQAM在调制时产生两个边带信号和一个载波分量,但载波分量不携带任何信息,不能有效的利用功率,因此在调制的输出信号中将载波抑制掉。在机顶盒的解调中采用相干解调,相干解调的关键技术是相干信号的提取,即载波的提取。相干载波需从抑制载波的已调信号本身中恢复出参考载波,通常采取非线性处理和滤波提取。经过非线性处理可以让不含载频的信号产生载频,然后再滤波提取,一般情况下,载波提取和解调是在同一个环内同时完成的,主要有平方环和考斯塔斯环(Costas)两种。然后机顶盒中恢复出的载波要与64QAM调制器产生的载波同频同相,这叫载波同步。此外数字系统中还有位同步(码元同步或比特同步)、帧同步和网同步等。 (3.2)64QAM调制的主要技术指标 64QAM调制器是数字调制器,其主要技术指标也较模拟的中频调制器多,mQAM调制器规定数字频道的载频安排在每个物理频道8MHz的中央位置,各频道的频率范围与模拟电视一致,也分捷变频和固定频道两种形式。下面以科学亚特兰大SA公司的主流品种QUASAR MKII(1U高度标准19英寸安装尺寸)mQAM调制器为例简介其主要技术指标和含义。 (1)                                       接口指标  接头:BNC,75Ω              ASI输入(标准配置)  类型:异步串行接口  包格式:自动检测:188/204包  码率:1~215Mb/s(最小1 Mb/s净荷) (2)                                       RF输出 接头:F头,BNC或75Ω,50/70Ω 频率:50~870MHz  带宽:1~8MHz可选  电平;50~60dBmV  回波损耗:≥15dB  BDR:≥9×10-9  SNR:≥50dB  RF测试口电平:-20 dB (3)                                       信号指标  信道编码;纠错方式FEC、RS编码和外交织  交织深度:I=12  MER(均衡后)≥40 dB(射频) 包格式:自动检测:188/204字节包  QAM星座:16、32、64、128、256QAM  支持的输入码率:高达215 Mb/s  符号率:1~7Mbaud  PID过滤功能:可选 (4)                                       网络接口  接口类型:RJ45  接口速率:10Base-T  支持协议:HTTP、SNMP (5)                                       选件     DS-3电信输入接口     64QAM调制器中最重要的一个技术指标是调制误差率(MER)。调制误差率国标的定义是理想矢量的幅度的平方与误差矢量幅度平方之比。显然调制误差率与反射损耗一样越大越好,国标规定64QAM的MER要大于32dB,256QAM的MER要大于30dB,图2为调制误差率示意图。         图2    调制误差率MER示意图 64QAM调制器还有一个信道指标有效载荷,数值为38Mb/s(不含RS编码),通常节目只能用到36Mb/s,还要留一部分码流传输EPG等辅助数据。它的含义是8MHz带宽内传输的码流不能大于此值(比如传10多套标清或3套高清电视节目),否则就会发生码流溢出的现象,从而导致马赛克或黑屏出现,就像GE中发生拥塞会降低传输速率或丢包一样。依标清电视码率4Mb/s和高电视码率18Mb/s,一台64QAM调制器可传8套标清或2套高清电视节目(还要为辅助数据如EPG等留下部分码流)。 选件DS3输入接口(北美标准三次群速率为45Mb/s)的功能很有使用价值,因为当今的广电网络并不是一个孤立的网络,大都通过SDH联网。上接省干SDH网络,下连各县SDH网络,可以说起到承上启下的作用。因此,从省网下传的信号和下连各县的信号都是走DS3通道,有了这个输入接口则SDH网络来的信号可以直接进入mQAM调制器,非常方便。相反若没有这个接口则还要使用网络适配器进行信号格式转换,即不方便也不经济。 (3.3)  64QAM调制和HFC网络的关系 基于DVB-C的有线数字电视前端平台中的设备和HFC网络联系最紧密的莫过于64QAM调制器了,其它前端设备如MPEG—2编码器和系统复用器等与HFC网络关联度不大,不像64QAM调制器那样对HFC网络的影响是直接和显著的。因此,从这个意义上讲64QAM对HFC网络有着举足轻重的作用。这样因为64QAM除了完成正交幅度调制外,还要完成信道的编码等功能。因为在实际运用中解码器(机顶盒)处要求MER大于30 dB,调制误差率反映了整个系统中信号所有类型的损伤和劣化。因此,调制误差率可以看成接收信号的品质因数,即数字信号能被正确还原的概率。可以这样理解调制误差率几乎相当于信噪比(S/N)的技术指标。显然调制误差率(MER)越高越好,这一点由调制误差率的定义不难看出。国标64QAM的MER要求大于32dB,好的可以大于43 dB,高于国标10 dB。显然,调制误差率是64QAM调制器中最重要的一个技术指标,这一点就像HFC网络中射频放大器的非线性失真指标一样重要。调制误差率(MER)高意味着对HFC网络的质量要求可以较低,即容许放大器串联的级数可以稍多,容许网络中有一些反射、接触不良和同轴电缆的质量可以稍差一点等等。反之若调制误差率(MER)指标越低,意味着对HFC网络的质量要求较高,即容许放大器串联的级数少,同时对HFC网络中存在反射、接触不良和同轴电缆的质量等提出了更高的要求(实际情况表明,这一点往往是不容易达到的)。由此可见调制误差率(MER)也是区分QAM调制器档次高低的关键技术指标。
    2021-06-09 00:31:17下载
    积分:1
  • 时域有限差分法 (高本庆)
    时域有限差分学习书籍,有研究FDTD方法的可以学习学习国防科技图书出版基金第二届评审委员会组成人员名誉主任委员怀国模主任委员黄宁副主任娄员殷鹤龄高景德陈芳允曾铎员尤子平朱森无朵英贤按姓氏笔划为序)刘仁何庆芝何因伟何新贵宋家树张汝果范学虹胡万忱柯有安侯迁候正明莫梧生崔尔东秘书长刘琯德时域有限差分法(Fnte- Differerce Time-Domain Method简称FDTD Method)是求解电磁问题的种数值技术,它是在1966年由K.S.Yee第一次提出的。fDTD法直接将有限差分式代替麦克斯韦时域场旋度方程中的微分式,得到关子场分量的有限差分式,用具有相同电参量的空间网格去模拟被研究体,选取合适的场初始值和计算室间的边界条件,可以得到包括时间变量的麦克斯韦方程的四维数值解。通过傅里叶变换可求得三维空间的频域解20多年来FDTD法历经了一个蓬勃发展的过程。最初是用它来求解金属体上的散射问题,用的是笛卡尔坐标系,使空间单元网格呈直角六面体。鉴于当时的计算机容量水平,特别是FDTD技术本身尚有若重要问题未很好解决,使得早期的数值精度不够高,应用范围也不很广,这种局面大约延续到70年代末期。随着FDTD技术的发展,首先需要解决的是有限计算空间的无反射截断问题,早期采用的一种方法是加大边界与散射体间距离,以在边界上构成外向行波,这种方法精度不高、计算空问亦大。直到将波方程的二阶近似用以处理边界上的场值,得到了较好近似的吸收边界条件,才将这个间题的解决向前推进了一大步在直角坐标系中用FDTD技术进行模拟时,光滑曲线形媒质表面将呈锯齿形状这可能产生沿面的表面波,加大了数值色散误差,解决这个问题的有效方法是“共形”技术的提出,这包括:或是使用曲线坐标系使媒质表面与坐标曲线共形,或是在直角坐标系中改变媒质介面上的网格形状,使二者共形,利用共形网格明显提高了计算精度。在类电磁问题中,当媒质结构尺寸比网格尺寸小时(如细线、窄槽或薄介质层等),将使FDTD模拟变得很困难。近来相继出现以麦克斯韦方程的国路积分形式建立相应FDTD算法式,FDTD与其他方法(如积分方程法或矩量法)的混合技术,以及媒质参数竹网格平均技术等,均提供了解决这类特殊问题的途径。FDTD法的特点是很易得到被研究体的近场,但不易一次直接得到远场值。80年代初期提出的利用等效原理将频城近场变换为远场是解决这个问题的好方法,近几年又将此技术发展到时域这二种路径给求解散射间题和天线问题提供了强有力的工具。值得提出的是,早期fTD方法中没有计及媒质的色散特性,即假定被研究媒质的电参数是与频率无关的。实际上自然界中有很多媒质的电参数具有很强的色散特性,近几年已开始注意研究色散媒质中的FDTD算法,为解决这电磁领域内难题铺平了道路。上述几方面问题的进展有力推动了FDTD技术的发展和应用,使它在解决复杂形体结构和多种媒质并存的一类呵题中占有重要的一席之地。今天,它不仅在电磁散射、电磁兼容预测、生物电磁学中得到卓有成效的应用,而且在天线做波技术、光电子学等的应用中意益受到重视。本书内容包括三部分:第一部分论述了FDTD法基本知识和各种FDTD算法,包括各种坐标系和特殊结构媒质的算法,以及FDTD与其他方法相结合的混合法等;第二部分介绍了FDTD法在电磁学各领域中的应用情况,内容涉及电磁散射微波传输线、天线、电磁榘容预測及生物电磁学范畴;第三部分讨论近期发展的色散媒质的FDTD算祛原理及其应用情况。本书在给出各种应用实例时,多将FDID法数据与理论值或实验数据或其他数值解数据(如矩量法等)进行比较。除早期发表的少数例子误差稍大外,大多数均与相比较的数据吻合很好。从目前水平看,在分析…般散射问题中,数值误差约在L%~3%附近(RCS的误差略大些),而在求谐振器本征值问题中,FDTD数值解与理论值误差低于百分之,某些情况能小于千分之一,这个精度是很喜人的。可以无夸张地说,FDTD法与其他数值解从精度上讲是可以媲美的,有的则有胜过。加之FDTD法得到的是时域解,通过傅氏变换可得到频域解。即它具有次时域计算代替频域上逐点计算的潜力。这些均L表示FDTD法具有较明显的优势。本书是作者尝试将已发表在不同场合不同时间的有关资料经整理推演、加工编写成专著。内容取材上亦包括作者及同事们近几年在这方面开展的工作结果。编写本书的目的是希望能起到抛砖引玉的效果。希给初学者提供…个入门途径,给从事这方面工作的同行们提供较系统的参考资料,以便更好地促进FDTD技术的发展和更进一步拓宽它的应用。由于作者才疏学浅,加上时间关系,错误和不足在所难免,上述目的恣难如愿敬请各位专家学者和读者多提供宝贵意见。在本书确立大纲的过程中,得到北京理工大学张德齐教授和楼仁海教授、西安交通大学汪文秉教授的帮助,汪文秉教授对内容安排提出了贵意见。要特别提到的是,在本书编写过程中得到中国科学技术大学旅美陈金元博士的大力支持和帮助陈博士及时寄来最新研究资料(见§7.6以充实本书内容。书稿完稿后,张德齐教授通阅了全稿,并提出宝贵意见国防工业出版社在本书出版过程中给予很多帮助,作者在此对他们表示衷心的感谢作者t993年8月于北京内容简介本书重点介绍」时域有限差分(FDTD)法的基本知识及其在电磁学各个领域内的应用。全书包括二部分(共八章),第一部分论述了FDTD法的基本知识(第…章)和各种FDTD算法,包括各种坐标和特殊结构媒质中FDTD算法及混合算法等(第二章);第二部分介绍FDTD法的爷种应用,内容涉及电磁散射(第三章〉微波传输线和谐振腔(第四章)、天线(第五章)、电磁兼容预测第六章)生物电磁学(第七章)等领域;第三部分介绍近期发展的色散媒质屮FDTD算法原及其应用情祝等(第八章〕。木书可供从事时域计算电磁学理论和应用妍究的人员参考,亦可供有关专业教师、研究生及商年级大学生作选修和参考用书目·录第一章时域有根差分法基本知识1.1支克斯韦方程1)].2FTD基本方程■h吾早4中■暑h音h鲁↓ψ中4山■■骨日◆p4白(生)1.3解的稳定性“……““〔l1)1.4边界条件…(13)1.5激励派的类型和设置……………………………(22)816误差分析………*………(29)§1.7近场一远场变换山中■冒↓d4白■■■e40)氵1.8FDTD数值解步骤…………(45〕参考文献■··■跏■·幽自嚞ψ■■·自·■甲血幽b中■●鲁歌●■甲晉『甲●■目■■46第二章FDTD算法变异48)82.1一般曲线坐标系的FDTD算法4甲●鲁ψψ■“ψ晕P山血曾■■■省口_P■口(48)§2.2正交曲线坐标系的PDTD算法(58}2.3非均匀网格尺寸的FDTD算法…(69)2.4细薄结构媒质的FTD算法……………*………(80)2.5FDTD瞬态积分方程的混合算法:(95§2.6FDTD矩量法时混合算法…………………*………(101)参考文献…………………………………………(105)第三章在电磁散射问题中的应用聊司自■电■■悬■■··ψb■■t最聊10883.1二维散射体■■画■·■唱口■■』烟·■口甲■唱■■即■■■口·吾■昌■■■■即■■■晶』h画p■■■昌〔108§3.2三维敢射体……………(114)3.3RCS计算……〔121)§3.4散射体的时域综合……………………**……(134)参考文献(143)第阿章在徽波传输线和谐振腔中的应用…………………(141徵带和共面传输线咖自b·山山山啬■■山■■ψ·;跏·■■“■士鲁■b■口■■■动●咖【41§4.2徼带不均匀性和徼带元件●日日鲁■日聊聊昏目申聊■与;自语↓ψ■ψ口一·↓c自ψb53)氵4.3波导传贛线元件……………………………………(63)8.4谐振腔的本征值……4…(j72)4.5谐振腔的e值(I名1参考文献…………………………………………(185第五章在天线问题中的应用·……(!8?)§5.1圆柱形单极天线………4■·↓■自·h■■■■■■■■甲4■■■▲187)5.2波导口和喇明线………………………………………(196)§5.3徽带贻片天线200)§5.4天线互朝的计算…ra……(210)参考文献1■幽昏p■■◆(215第六章在电磁兼容预测中的应用…(218§6·]瞬变电驚环境下飞机表面效应………“(216)§6.2EMP对连接有尾气焰导弹体的效应…(22)s63EM场透入导弹导引头的预浏■■■非十(230)6.4飞行体上微带贴片天线的EMP效应……a(233)6.5TEM传导胞腔中不均匀性影响的预测…-4…*4(239参考文献昏■■·聊■●■■■·ψ■山幽■如卓■■ψ卩■■中斷鲁晋■■口自■■导画晋■b山1〔241第七章在生物电磁学中的应用……246§7.1生物组织的电磁特性及人体电磁模型……………"……(246)72平面波照射下人体内的电磁效应号昌◆+卓b4即u(z56)7.3工业加热器对人体的作用…………………………(263)7.4动力电的人体效应…sa…(2687.5高压EMP的生物效.…·…(273)N7.6虾篾电话的人体效应…■■■■■↓鲁号↓個山山……(280)参考文………………………………………(2865第八章色教媒质的FDTD算法日■■d十■T■一一會■■『■■■血288)N8.1离散时域卷积建立FDTD方程……〔288N8.2由德拜方程和频域场到吋域的直接变换建立FDTD方程"sr…:…(295)氵8.3由z变换建立FDTD方程日ψ号■自卓自甲ψ吾■■■日■■■道语晶画『4b即44■(298)4色散媒质的吸收边界条件…………………"………(303)8.5(FD)TD法应用举例……(3058.6表面阻抗概念在fDTD法中的应用……(314)s8.了表面阻抗FDT法应用举例………■·■■b■324)参考文献(召30
    2021-05-06下载
    积分:1
  • Windows64下通过python调用海康SDK实现登入、预览、抓图、光学变倍、相机激活、区域聚焦、区域曝光功能
    在windous系统下Python实现海康相机登入、预览、抓图、光学变倍、相机激活、区域聚焦、区域曝光功能;linux系统下载相应的海康SDK,并将lib文件更换为相对应的库文件,同时将HCNetSDKCom文件夹拷贝出来(与lib文件夹同一级别)
    2020-12-06下载
    积分:1
  • 传感器信息融合——MATLAB序实现.rar
    Matlab代码,进行传感器数据融合,直接导入Matlab工程即可使用。无加密!
    2021-05-07下载
    积分:1
  • HyperMesh & HyperView 应用技巧与高级实例
    Hypermesh应用技巧与高级实例,有需要附带观盘的可以联系我,我给你分享过去
    2020-12-03下载
    积分:1
  • matlab多机器人避障
    多个机器人之间的协调路径规划,可以实现多个机器人由已知起点到已知目标点避障。
    2020-11-28下载
    积分:1
  • 维纳滤波和盲去卷积复原图像,matlab
    维纳滤波和盲去卷积算法,复原图像,matlab
    2020-11-28下载
    积分:1
  • 696518资源总数
  • 106242会员总数
  • 10今日下载