登录
首页 » Others » SSH真实项目源码(java)+所有开发文档(全).rar

SSH真实项目源码(java)+所有开发文档(全).rar

于 2021-11-24 发布
0 235
下载积分: 1 下载次数: 1

代码说明:

由于项目很大,所以上传的不包含JAR包,请自己添加进来。里面包括了所有的开发文档

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 系统辨识大牛Ljung写的MATLAB系统辨识使用手册
    系统辨识大牛Ljung编写的MATLAB系统辨识使用手册,这本书详细地介绍了在MATLAB已经所属simulink环境下,系统辨识工具箱的一些使用办法,是一本非常经典的教材!Revision Historypril 1988First printingJuly 1991Second printingMay1995Third printingNovember 2000 Fourth printingRevised for Version 5.0(Release 12)pril 2001Fifth printingJuly 2002Online onlyRevised for Version 5.0.2 Release 13)June 2004Sixth printingRevised for Version 6.0.1(Release 14)March 2005Online onlyRevised for Version 6.1.1Release 14SP2)September 2005 Seventh printingRevised for Version 6.1.2(Release 14SP3)March 2006Online onlyRevised for Version 6.1.3(Release 2006a)September 2006 Online onlyRevised for Version 6.2 Release 2006b)March 2007Online onlyRevised for Version 7.0 ( Release 2007a)September 2007 Online onlyRevised for Version 7.1 (Release 2007bMarch 2008Online onlyRevised for Version 7.2(Release 2008a)October 2008Online onlyRevised for Version 7.2.1 Release 2008b)March 2009Online onlyRevised for Version 7.3(Release 2009a)September 2009 Online onlyRevised for Version 7.3.1(Release 2009b)March 2010Online onlyRevised for Version 7. 4 (Release 2010a)eptember2010 Online onlyRevised for Version 7.4.1(Release 2010b)pril 2011Online onlRevised for Version 7.4.2(Release 2011a)September 2011 Online onlyRevised for Version 7.4.3(Release 2011b)March 2012Online onlyRevised for Version 8.0( Release 2012aabout the DevelopersAbout the Developersystem Identification Toolbox software is developed in association with thefollowing leading researchers in the system identification fieldLennart Ljung. Professor Lennart Ljung is with the department ofElectrical Engineering at Linkoping University in Sweden. He is a recognizedleader in system identification and has published numerous papers and booksin this areaQinghua Zhang. Dr. Qinghua Zhang is a researcher at Institut Nationalde recherche en Informatique et en Automatique(INria) and at Institut deRecherche en Informatique et systemes Aleatoires (Irisa), both in rennesFrance. He conducts research in the areas of nonlinear system identificationfault diagnosis, and signal processing with applications in the fields of energyautomotive, and biomedical systemsPeter Lindskog. Dr. Peter Lindskog is employed by nira dynamiAB, Sweden. He conducts research in the areas of system identificationsignal processing, and automatic control with a focus on vehicle industryapplicationsAnatoli Juditsky. Professor Anatoli Juditsky is with the laboratoire JeanKuntzmann at the Universite Joseph Fourier, Grenoble, france. He conductsresearch in the areas of nonparametric statistics, system identification, andstochastic optimizationAbout the developersContentsChoosing Your System Identification ApproachLinear model structures1-2What Are Model objects?Model objects represent linear systemsAbout model data1-5Types of Model objectsDynamic System Models1-9Numeric Models1-11umeric Linear Time Invariant (LTD Models1-11Identified LTI modelsIdentified Nonlinear models1-12Nonlinear model structures1-13Recommended Model Estimation Sequence1-14Supported Models for Time- and Frequency-DomainData,,,,,,,1-16Supported Models for Time-Domain Data1-16Supported Models for Frequency-Domain Data1-17See also1-18Supported Continuous-and Discrete-Time Models1-19Model estimation commands1-21Creating Model Structures at the command Line ... 1-22about system Identification Toolbox Model Objects ... 1-22When to Construct a Model Structure Independently ofEstimation1-23Commands for Constructing Model Structures1-24Model Properties1-25See als1-27Modeling Multiple-Output Systems ......... 1-28About Modeling multiple-Output Systems1-28Modeling Multiple Outputs Directly1-29Modeling multiple outputs as a Combination ofSingle-Output Models.......1-29Improving Multiple-Output Estimation Results byWeighing Outputs During Estimation ....... 1-30Identified linear Time-Invariant models1-32IDLTI Models1-32Configuration of the Structure of Measured and Noise oRepresentation of the Measured and noise Components foVarious model Types1-33Components ....1-35Imposing Constraints on the Values of ModeParameters1-37Estimation of Linear models1-8Data Import and Processing2「Supported Data ...2-3Ways to Obtain Identification DataWays to Prepare Data for System Identification ... 2-6Requirements on Data SamplingRepresenting Data in MATLAB Workspace·····Time-Domain Data Representation2-9Time-Series Data Representation2-10ContentsFrequency-Domain Data Representation ....... 2-11Importing Data into the Gui2-17Types of Data You Can import into the GUi2-17Importing time-Domain Data into the GUI2-18Importing Frequency-Domain Data into the GUI2-22Importing Data Objects into the GUI ......... 2-30Specifying the data sampling interval2-34Specifying estimation and validation Data2-35Preping data Using Quick StartCreating Data Sets from a Subset of Signal Channelo2-362-37Creating multiexperiment Data Sets in the gUi2-39Managing data in the gui ............. 2-46Representing Time- and Frequency-Domain Data Usingiddata object2-55iddata constructor2-55iddata Properties.........2-58Creating Multiexperiment Data at the Command Line .. 2-61Select Data Channels, I/O Data and Experiments in iddataObjects2-63Increasing Number of Channels or Data Points of iddataObjects2-67Managing iddata Objects2-69Representing Frequency-Response Data Using idfrdObiec2-76idfrd Constructor2-76idfrd Properties2-77Select I/o Channels and Data in idfrd Objects ..... 2-79Adding Input or Output Channels in idfrd Objects2-80Managing idfrd Objects2-83Operations That Create idfrd Objects2-83Analyzing Data quality2-85Is your data ready for modeling?2-85Plotting Data in the guI Versus at the command line2-86How to plot data in the gui2-86How to plot data at the command line2-92How to Analyze Data Using the advice Command2-94Selecting Subsets of Data2-96IXWhy Select Subsets of Data?2-96Extract Subsets of Data Using the GUI2-97Extract Subsets of data at the Command Line2-99Handling Missing Data and outliers2-100Handling missing data2-100Handling outliers2-101Extract and Model Specific Data Segments2-102See also2-103Handling offsets and Trends in Data2-104When to detrend data2-104Alternatives for Detrending Data in GUi or at theCommand-Line2-105Next Steps After detrending2-107How to Detrend Data Using the Gui2-108How to detrend data at the Command line2-109Detrending Steady-State Dat109cending transient Dat2-109See also2-110Resampling Data2-111What Is resampling?...,,.,,,,,,,,,,,.2-111Resampling data without Aliasing Effects2-112See also2-116Resampling data Using the GUi.,,,,2-117Resampling Data at the Command line2-118Filtering Data2-120Supported Filters2-120Choosing to Prefilter Your Data2-120See also2-121How to Filter Data Using the gui2-122Filtering Time-Domain Data in the GuI........ 2-122Content
    2020-12-11下载
    积分:1
  • echarts地图资源
    echarts map 资源,含全世界;中国;省;市地区的地图 ;json .js都有),echarts官网上都挺详细的,唯一难受的地方就是echarts的地图数据都下架了,数据或许不是很精确,所以仅供大家参考。有问题可以联系
    2021-05-06下载
    积分:1
  • 35个行业-微信小序源码.zip
    o2o行业 图片展示 小游戏类 教育培训 法律咨询 视频直播 门店店铺交友互动 地图定位 影音娱乐 新闻资讯 演绎博览 论坛系列 阅读读书促销抽奖 外卖点餐 报名预约 旅游行业 物流快递 运动健身 餐饮美食医疗保健 娱乐搞笑 招聘行业 智能家居 艺术生活 金融行业 互联网行业同城分类 小工具类 拼车源码 水利工程 装修装饰 门店展示 优惠券卡卷
    2020-12-05下载
    积分:1
  • matlab贝叶斯网络工具箱
    贝叶斯网络工具箱采用MATLAB语言编制的贝叶斯网络工具箱(Bayesian Networks Toolbox,BNT)可实现贝叶斯网络结构学习、参数学习、推理和构建贝叶斯分类器,此工具箱在贝叶斯学习编程方面非常灵活。利用贝叶斯网络工具箱可以解决贝叶斯学习和推理问题
    2021-05-06下载
    积分:1
  • MFC下SQL的新增,删除和修改
    一个MFC工程,主要作用是在SQL SERVER 2008下,动态的新增,删除和修改数据库。
    2020-12-07下载
    积分:1
  • C# 计算GPS卫星位置(使用广播星历)
    C# 计算GPS卫星位置(使用广播星历) C# 计算GPS卫星位置(使用广播星历)
    2020-12-05下载
    积分:1
  • android 连连看 源码
    android 连连看 源码android 连连看 源码
    2020-12-03下载
    积分:1
  • 求解约束优化的粒子群算法研究(电子书)(看评论酌情下载)
    求解约束优化问题的粒子群算法研究.zip求解约束优化问题的粒子群算法研究.zip
    2020-12-06下载
    积分:1
  • Master SPI的Verilog源代码(包括文档 测试序),强烈推荐
    Master SPI的Verilog源代码(包括文档 测试程序),强烈推荐
    2021-05-06下载
    积分:1
  • 滴滴出租数据
    滴滴数据,包含id,起始点经纬度gps坐标,使用者的下车位置信息等等
    2021-05-07下载
    积分:1
  • 696516资源总数
  • 106446会员总数
  • 9今日下载