登录
首页 » Others » 基于stm32的数控直流电源.zip

基于stm32的数控直流电源.zip

于 2021-11-25 发布
0 332
下载积分: 1 下载次数: 2

代码说明:

基于stm32 的数控直流电源控制系统,使用内部FLASH实现断电保存

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • 图像下采样算法
    实现图像、影像下采样,采样方法有最邻近采样法、二次插值法、双三次卷积法。matlab实现。
    2020-11-29下载
    积分:1
  • IET control theory and application 期刊的最新latex模板
    控制学科sci期刊IET control theory and application 期刊的最新latex投稿模板
    2020-11-28下载
    积分:1
  • 粘弹性介质地震波场有限差分数值模拟
    该程序能够实现地震波在粘弹性介质中的波场数值模拟研究,可用于石油天然气地震勘探领域中地震波场在地下传播的数值模拟,用于对实际地下反射波信号衰减特性的分析
    2020-12-12下载
    积分:1
  • 基于DOAS和支持向量回归的SO_2浓度检测方法研究.pdf
    基于DOAS和支持向量回归的SO_2浓度检测方法研究.pdf
    2020-11-05下载
    积分:1
  • 麦克风阵列前端语音信号处理
    个人学习笔记,稍稍整理下阵列波東形成技术模型最大信噪比最小方差无失真响应滤波器线性约束最小方差广义旁瓣相消基于阵列定位和跟踪技术互相关方法3.3.2广义互相关(基于特征向量的方法最小熵法白适应特征向量分解法自适应盲信号分离(,空域线性预测法语音信号预加重算法第五章模型高斯混合模型隐马尔可夫模型频率分析()深度神经网络第章信号处理语音信号特点在一段时间内),人的声带和声道形状是相对稳定的,可认为其特征是不变的。语音可以分为周期性的浊音和非周期的清音。浊音和清音绎常在一个音节中同时出现。浊音部分和音质关系密切,在时域上呈现岀明显的周期性,在频域上有共振峰结构,而且大部分能量集中在较低频段内,是语音中人幅度高能量的部分;清音则具有明显的时域和频域特征,类似于白噪声,能量较小,在强噪声中容易被掩盖,但在较髙信噪比时能提供较多的信息。在语音增强中,可以利用浊音的周期性特征,采用梳状滤波器提取语音分量或者抑制非语音信号,而清音则难以与宽带噪声区分,加性噪声大致上有:周期性噪声、脉冲噪声、宽带噪声和同声道的其亡语音干扰等。周期性噪声主要来源于发动机等周期性运转的机械,电气干扰,特别是电源交流声也会引起周期性噪声,其特点是有许多离散的窄谱峰。脉冲噪声来源于爆炸、撞击和放电等,表现为时域波形中突然出现的窄脉冲。宽带噪声的来源很多,包括热噪声、气流(风、呼吸)噪声及各种随杋噪声源,量化噪声也可视为宽带噪声。平稳的宽带噪声,通常也可以λ为宽带噪声。平稳的宽带噪声,通常也可以视为高斯白噪声。语音增强算法大致分为四种:参数法、非参数法、统讣法和其它方法。信号响应的意义对于任何一个信号均可以使用冲击函数来表示,即:∑()6(数字信号处理的意义就是通过运算来达到处理的目的,设这种运算关系为:]则输出信号()和输入信号()之间的关系指述为=[()。卷积推导设系统输入()=6()系统的输出()的初始状态为零,这时系统输出用()表示为则称()为系统的单位脉冲响应。则对任意输入信号(),系统输出为:()6(根据叠加原理可得:()∑()(-)∑()[6(-)利用系统时不变性,可得下式6(-)=(-),因此可得:()∑()o(-)=()*()上述就是卷积公式的推导。时域离散系统的输入输出描述法描述一个系统可以不管系统内部的结构如何,将系统看成一个黑盒子,只描述系统的输岀和输入之间的关系,这种描述法被成为输入输岀描述法。在模拟系统中使微分方程描述系统的输入和输出之间的关系,在时域离散系统中使用差分方程描述系统的输入和输岀关系点评:微分方程重在描述变化的趋势,差分方程的过程可以套用卷积的方法。时域离散信号傅里叶变换(TFT, Discrete- Time Fourier Transform)定义上述ω的单位是弧度,范围是x。其傅里叶反变换由如下公式得到:()周期信号由傅里叶级数表示傅里叶变换的一些性质时域卷积,频域相乘;时域相乘,频域卷积∑|()巴塞伐尔定理信号的功率也可以在频域求离散傅里叶变换(将有限长时域离散信号变换到频域的变换,但变换的结果是对时域离散信号的频谱的等问隔采样定义设序列()的长度为,定义()的点为()=[()=∑(式中,成为离散傅里叶变换区间长度,要求中即可得为书写简单,令则可以简写为:()=[()=∑()≤≤其反变换如下()=[()=-∑()和之间的关系:的主要性质)线性性质)隐含周期性)循环移位性质)有限长序列的循环移位设序列()的长度为,对()以≥为周期进行周期延拓,得到:()=()定义()的循环移位序列为()=^(+)()=(+)()上式表示将序列()以为周期进行周期延拓,再左移个单位取主值序列,就得到()的循环移位序列()。则有如下结论:设序列()的长度为,其循环移位序列为()=()())=[()()=[()短时傅里叶变换(,针对平稳信号的变换,语音信号在长时间跨度上不平稳,但其每个时间段内可看成是平稳的。定义°,()是输入信号,()是分析窗口(-)是纤过时域翻转并右移个采样点。类似于,离散定义如下)2()=∑()(其含义是在时域用窗函数截取信号,对截取部分的信号进行傅里叶变换,即在时刻得到时刻该段信号的傅里叶变换,不断移动,即可得到不同的傅甲叶变换,将这些傅里叶变换组合起来即得(o)计算在计算()和滤波器()卷积效率较高。的基木思想是将()分段,将分段后的每段与()卷积()=是任意的分段长度()=∑(-)()=∑(-)()=∑)*()=∑数字滤波器的最大优点是可以实现线性相位滤波。线性相位设的单位脉冲响应()的长度为,则其频响函数为()=∑()将(“)表示成如下形式e(a)式中,(a)是O的实函数,如果满足0(o)a则相位满足线性关系线性相位对时域和频域的约束)=∑O0展开可得:∑()(0-(o)=(a)((o)-(o)系数偶对称。窗函数设计其设计思想是使用逼近希望的滤波特性。基本方法)构造希望逼近的频响函数(“)
    2020-12-12下载
    积分:1
  • winpcap发送TCP数据包
    winpcap开源包,实现数据链路层,网络层,传输层,的封包技术!并发送出去!
    2020-12-01下载
    积分:1
  • 数据结构与算法源代码 北大 张铭
    北大张铭老师数据结构与算法课程的源代码,很不错的学习资料
    2020-12-04下载
    积分:1
  • APDL-ANSYS命令流学习笔记
    APDL-ANSYS命令流学习笔记
    2021-05-06下载
    积分:1
  • SVPWM算法详解_已标注重点_
    详细的讲解了SVPWM的过程,及其仿真,很适合初学者或(37)即磁链空间矢量可以等效为电压空间矢量的积分,如果能够控制电压空间矢量的轨迹为如式(3.4)所示的圆形矢量,那么磁链空间矢量的轨迹也为圆形。这样,电动机旋转磁场的轨迹问题就可以转化为电压空间矢量的运动轨迹问题。进一步分析,由式(3.3)(3.5)(3.7)可以得到公式(3.8)∫-+yy(38)对电压积分,利用等式两边相等的原则有(39)其中,v为电机磁链的幅值,即为理想磁链圆的半径。y当供电电源保持压频比不变时,磁链圆半径v是固定的。在 SVPWM控制技术中,是取以y为半径的磁链圆为基准圆的。32逆变器电压的输出模式图32给出了电压源型PWM逆变器—异步电动机示意图14。昇步电动机定子绕组YY图3.2PWM逆变器电路(1~6为GBT)对于180°导电型的逆变器来说,三个桥臂的六个开关器件共可以形成8种开关模式。用分别标记三个桥臂的状态,规定当上桥臂器件导通时桥臂状态为1,下桥臂导通时桥臂状态为0,这样逆变器的八种开关模式对应八个电压空间矢量,其中为直流侧电压在逆变器的八种开关模式中,有六种开关模式对应非零电压空间矢量,矢量的幅值为一;有两种开关模式对应的电压矢量幅值为零,称为零矢量。当零矢量作用于电机时不形成磁链矢量;而当非零矢量作用于电机时,会在电机中形成相应的磁链矢量。对于每一个电压空间矢量,可由图32求出各相的电压值,再将各相的电压值代入式(3.3),可以求得电压空间矢量的位置。下面以开关状态)=(、0、0)为例,即开关导通,其余关断。逆变电路的形式可以变为B相和C相并连后再和A相串连的形式,易得将其数值代入式(33),可得采用同样的方法可以得到如表31所示的逆变器空间电压矢量。表31逆变器的不同开关状态对应的空间矢量表相电压矢量表达式定子电压开关状态(Us大小为空间矢量A相B相C相0000000101001110010111100由于 SVPWM控制的是逆变器的开关状态,在实际分析逆变器一电动机系统时,可以通过分析逆变器输出的电压空间矢量来分析电机定子电压的空间矢量,下面给出证明。设逆变器输出的三相电压为、,由图3.2可求出加到电机定子上的相电压为(310)其中,为电机定子绕组星接时中点0相对于逆变器直流侧点的电位。电机定子电压空间矢量为(311)而由三角函数运算知++因此,逆变器输出的电压空间矢量为(312)由式(3.12)可知,在PWM逆变器一电动机系统中,对电机定子电压空间矢量的分析可以转化为对逆变器输出电压空间矢量的分析。这时,在求解表3.1时,可以直接利用逆变器输出的电压合成得到,即A,B,C三相输出电压值只有一和-—两个值。当逆变器输出某一电压空间矢量时,电机的磁链空间矢量可表示为y =y3.13)其中,W为初始磁链空间矢量;△为的作用时间。当为某一非零电压矢量时,磁链空间矢量y从初始位置出发,沿对应的电压空间矢量方向,以为半径进行旋转运动,当为一零电压矢量时,W=y,磁链空间矢量的运动受到抑制。因此合理地选择六个非零矢量的施加次序和作用时间,可使磁链空间矢量顺时针或逆时针旋转形成一定形状的磁链轨迹。在电机控制当中尽量使磁链轨迹逼近正多边形或圆形。同时,在两个非零矢量之间按照一定的原则,比如开关次数最少,插入一个或多个零矢量并合理选择零矢量的作用时间,就能调节ψ的运动速度。33SWPM的具体实现方法在实际应用中,应当利用 SVPWM自身的特点找到控制规律,避开复杂的数学在线运算,从而较为简单的实现开关控制,本节将给出实现 SVPWM的具体方法。根据3.2节中给出的不同开关状态组合可以得到如图33的电压空间矢量图C图3.3 SVPWM矢量、扇区图通常在矢量控制的系统当中,根据控制策略,进行适当的巫标变换,可以给出两相静止坐标系即(a,B)坐标系电压空间矢量的分量,g,这时就可以进行 SVPWM的控制,具体要做以下三部分的工作如何选择电压矢量。2.如何确定每个电压矢量作用的时间。3.确定每个电压矢量的作用顺序3.3.1电压空间矢量的空间位置这里需要引入扇区的概念,将整个平面分为六个扇区。如图3.3所示,每个扇区包含两个基本矢量,落在某个扇区的电压空间矢量将由扇区边界的两个基本电压空间矢量进行合成。在确定扇区时,引入三个决策变量A,B,C。根据给出的待合成的空间矢量的两个分量,p来决定A,B,C的取值,有以下关系式所在扇区的位置为当N取不同的值对应的扇区位置如图3.3所示,这样给定一个空间电压矢量就可以确定其所在的扇区。33.2电压空间矢量的合成扇区确定之后,就可以利用扇区边界上的两个基本矢量合成所需的矢量在合成过程中应当使得两个基本矢量的合成效果接近于期望矢量的效果。于是采用伏秒平衡的原则,以图3.3所示的第Ⅲ扇区为例,以a尸轴为基准,将两个基本矢量向aB轴上投影,应当有轴:=||+尸轴其中,为对应电压矢量作用的时间(=),为采样周期,通常为PW的调制周期。且|=||=-。求解上面两式可以得到这两个基本矢量的作用时间如式3.14(314)通过上面的方法即可以确定基本矢量的作用时间,当需要合成的矢量位于各个不同的扇区时都存在如上的运算。通过对每个扇区基本矢量动作时间的求解不难发现它们都是一些基本时间的组合。所以给出几个基本的时间变量x,Y,Z。定义√(315)通过计算可以得到在每个扇区内的基本矢量动作时间,(由于五段和七段式的实现方法不同,所以这里没有考虑矢量的动作顺序,仅按照逆时针方向)。设每个刷区的两个基本矢量动作的时间为于是可以得到矢量动作时间表3,2表3.2的对应关系表扇区ⅣV在实际的应用中当给定的电压值太大时会出现过调制的情况,即+>。此情况出现时,还要对上述计算出来的电压矢量的作用时间进行调整,具体方法如式3.16所示。(316)即为调整后的动作时间。在一个P啊M周期内除了非零电压矢量的作用,还要有零电压矢量的作用,零电压矢量包括对于这两个矢量的作用时间,以及开关的动作顺序,取决于采用的SPwM是五段式还是七段式,3.3节将对这两种PWM形式进行详细的介绍3.4 SVPWM的硬件实现和软件实现TI公司的TM320LF2407A系列的DSP内部有硬件来实现 SVPWM,由于每个PWM周期被分为五段,因此也被称为五段式的 SVPWM。在每个PWM调制周期内,开关状态有五种,且关于周期中心对称。而七段式的SvPM在每个PWM调制周期内有七种开关状态,需要运用软件进行实现,因此也被称为 SVPWM的软件实现。需要注意的是,无论哪种方法,所遵循的基本原则是开关动作次数最少,每个开关在一个周期内最多动作两次。3.4.1五段式 SVPWM对于五段式的 SVPWM,只在PMM周期的中间插入零矢量,具体采用哪一个由硬件根据旋转方向和开关动作次数最少的原则自行决定。例如在第Ⅲ扇区内,如果旋转方向为逆时针时针,则先动作,后动作以此类推,动作时间可以直接采用表3.2中的数据即可,然后选择零矢量(硬件决定)即可使开关次数最少。对于五段式PWM而言,零矢量作用的时间可以表示为:根据上述的配置原则,在每个扇区内开关动作的示意图如图34所示202ⅣV/1Ⅵ图34每个扇区内的开关动作示意图每个TMS320LF2407A的事件管理器EV模块都具有十分简化的电压空间矢量PWM波形产生的硬件电路。编程时只需进行如下的配置2●设置 ACTRX寄存器用来定义比较输出引脚的输出方式,决定高电平还是低电平有效,正反转,所在扇区等。●设置COMC0Nx寄存器来使能比较操作和空间矢量PWM方式,并且把 CMPRX的重装条件设置为下溢●将通用定时器1或2,4或5设置成连续增/诚计数模式,并启动定时器。然后给据在两相静止(a6)坐标系下输入到电机的电压空间矢量,分解为,确定如下的参数●所期望的矢量所在的扇区。根据 SVPWM的调制周期计算出两个基本的空间矢量和零矢量作用的时间
    2020-12-06下载
    积分:1
  • 行人检测跟踪
    人形目标检测与跟踪,对于视频图像,用方框或椭圆标出检测出的行人运动目标,以实现对目标的跟踪。
    2020-11-27下载
    积分:1
  • 696518资源总数
  • 105877会员总数
  • 14今日下载