登录
首页 » Others » EC20_MQTT提交温湿度数据到ONENET.zip

EC20_MQTT提交温湿度数据到ONENET.zip

于 2021-11-26 发布
0 207
下载积分: 1 下载次数: 2

代码说明:

EC20基于STM32F407 MQTT协议上传数据到onenet

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • Java(SSH)界面美观大方 设备管理系统-vimesly
    1.2.1 基本功能需求1. 登录功能首先是欢迎界面,然后选择登录,登录的时候首先要判断用户的身份,合法的用户然后进入到系统主界面中,不同的用户看到不同的系统功能。创建后台数据库,然后用编写程序实现对数据库的操作,按照要求完成所有的功能和模块。2. 设备管理信息系统主要功能部门操作员和操作管理员首先需要注册并通过超级管理员的认证后,才能登录到系统中来,超级管理员不需要注册。部门操作员能够实现对本部门设备信息的查询和维修记录的添加等功能,操作管理员能够实现所有部门设备信息的添加、修改、删除等功能。超级管理员能够实现所有部门人员以及设备的管理。(1) 超级管理员。3)人员维护:对部门
    2020-12-02下载
    积分:1
  • Matlab气体模拟扩散代码
    要求用matlab编程模拟分子碰撞,演示气体扩散情况。本实验中的模型采用简化形式,所发生碰撞均为完全弹性碰撞。
    2020-11-30下载
    积分:1
  • 《数据结构》课设计:停车场管理系统
    《数据结构》课程设计:停车场管理系统《数据结构》课程设计:停车场管理系统《数据结构》课程设计:停车场管理系统《数据结构》课程设计:停车场管理系统
    2020-07-03下载
    积分:1
  • 基于javase的点餐平台(吃货)
    一个java程序,适合与新手入门,gui程序,结合mysql数据库,类似美团,淘宝的点餐平台
    2021-05-06下载
    积分:1
  • SVM的Matlab工具箱,具有详细工具箱安装说明,及调用方法,非常详细,绝对可用
    SVM的Matlab工具箱,具有详细工具箱安装说明,及调用方法,非常详细,绝对可用,包含二维线性可分、二维线性不可分,三维线性可分三种情况
    2020-12-10下载
    积分:1
  • 灰度共生矩阵纹理特征提取的Matlab实现
    图像的特征提取是图像的识别和分类$基于内容的图像检索$图像数据挖掘等研究内容的基础性工作,其中图像的纹理特征对描述图像内容具有重要意义,纹理特征提取已成为目前图像领域研究的热点#文中深入研究了基于灰度共生矩阵( /012) 的纹理特征提取方法,给出了基于 234536 的简便实现代码,分析了共生矩阵各个构造参数对构造共生矩阵的影响#分析结果对优化灰度共生矩阵的构造$实现基于灰度共生矩阵( /012) 的特定图像的纹理特征提取等都具有重要参考意义
    2021-05-06下载
    积分:1
  • 电压电流表,带校准功能,有原理图,序源码,可以参考
    使用STM8S003F3P6单片机设计的电压表电流表,带12864显示屏显示,具有校准功能,包含原理图,程序源码
    2020-12-01下载
    积分:1
  • 能量检测、匹配滤波器检测、合作式检测Matlab仿真代码
    认知无线电中频谱感知技术研究+Matlab仿真代码
    2020-12-04下载
    积分:1
  • MATLAB在卡尔曼滤波器中应用的理论与实践Kalman
    MATLAB在卡尔曼滤波器中应用的理论与实践KalmanKALMAN FILTERINGTheory and Practice Using MATLABThird editionMOHINDER S GREWALCalifornia State University at FullertonANGUS P. ANDREWSRockwell Science Center (retired)WILEYA JOHN WILEY & SONS, INC. PUBLICATIONCopyright 2008 by John Wiley sons, Inc. All rights reservedPublished by John Wiley sons, InC, Hoboken, New JerseyPublished simultaneously in CanadaNo part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or byany means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permittedunder Section 107 or 108 of the 1976 United States Copyright Act, without either the prior writtenpermission of the Publisher, or authorization through payment of the appropriate per-copy fee to theCopyright Clearance Center, Inc, 222 Rosewood Drive, Danvers, MA 01923,(978)750-8400, fax(978)750-4470,oronthewebatwww.copyright.com.RequeststothePublisherforpermissionshouldbe addressed to the Permissions Department, John Wiley Sons, Inc, lll River Street, Hoboken, NJ07030,(201)748-6011,fax(201)748-6008,oronlineathttp://www.wiley.com/go/permissionimit of liability Disclaimer of Warranty: While the publisher and author have used their best efforts inpreparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability orfitness for a particular purpose. No warranty may be created or extended by sales representatives orwritten sales materials. The advice and strategies contained herein may not be suitable for your situationYou should consult with a professional where appropriate. Neither the publisher nor author shall be liablefor any loss of profit or any other commercial damages, including but not limited to special, incidentalconsequential, or other damagesFor general information on our other products and services or for technical support, please contact ourCustomer Care Department within the United States at(800)762-2974, outside the United States at(317)572-3993 or fax(317)572-4002Wiley also publishes its books in a variety of electronic formats. Some content that appears in print maynot be available in electronic format. For more information about wiley products, visit our web site atwww.wiley.comLibrary of Congress Cataloging- in-Publication DataGrewal. Mohinder sKalman filtering: theory and practice using MATLAB/Mohinder S. GrewalAngus p. andrews. 3rd edIncludes bibliographical references and indexISBN978-0-470-17366-4( cloth)1. Kalman filtering. 2. MATLAB. I. Andrews, Angus P. II. TitleQA402.3.G69520086298312—dc22200803733Printed in the United States of america10987654321CONTENTSPrefaceAcknowledgmentsXIIIList of abbreviationsXV1 General Information1.1 On Kalman Filtering1.2 On Optimal Estimation Methods, 51. 3 On the notation Used In This book 231. 4 Summary, 25Problems. 262 Linear Dvnamic Systems2. 1 Chapter focus, 312.2 Dynamic System Models, 362. 3 Continuous Linear Systems and Their Solutions, 402.4 Discrete Linear Systems and Their Solutions, 532.5 Observability of Linear Dynamic System Models, 552.6 Summary, 61Problems. 643 Random Processes and Stochastic Systems3.1 Chapter Focus, 673.2 Probability and random Variables (rvs), 703.3 Statistical Properties of RVS, 78CONTEN3.4 Statistical Properties of Random Processes(RPs),803.5 Linear rp models. 883.6 Shaping Filters and State Augmentation, 953.7 Mean and Covariance propagation, 993.8 Relationships between Model Parameters, 1053.9 Orthogonality principle 1143.10 Summary, 118Problems. 1214 Linear Optimal Filters and Predictors1314.1 Chapter Focus, 1314.2 Kalman Filter. 1334.3 Kalman-Bucy filter, 1444.4 Optimal Linear Predictors, 1464.5 Correlated noise Sources 1474.6 Relationships between Kalman-Bucy and wiener Filters, 1484.7 Quadratic Loss Functions, 1494.8 Matrix Riccati Differential Equation. 1514.9 Matrix Riccati Equation In Discrete Time, 1654.10 Model equations for Transformed State Variables, 1704.11 Application of Kalman Filters, 1724.12 Summary, 177Problems. 1795 Optimal Smoothers5.1 Chapter Focus, 1835.2 Fixed-Interval Smoothing, 1895.3 Fixed-Lag Smoothing, 2005.4 Fixed-Point Smoothing, 2135.5 Summary, 220Problems. 226 Implementation Methods2256. 1 Chapter Focus, 2256.2 Computer Roundoff, 2276.3 Effects of roundoff errors on Kalman filters 2326.4 Factorization Methods for Square-Root Filtering, 2386. 5 Square-Root and UD Filters, 2616.6 Other Implementation Methods, 2756.7 Summary, 288Problems. 2897 Nonlinear Filtering2937.1 Chapter Focus, 2937.2 Quasilinear Filtering, 296CONTENTS7.3 Sampling Methods for Nonlinear Filtering, 3307.4 Summary, 345Problems. 3508 Practical Considerations3558.1 Chapter Focus. 3558.2 Detecting and Correcting Anomalous behavior, 3568.3 Prefiltering and Data Rejection Methods, 3798.4 Stability of Kalman Filters, 3828. 5 Suboptimal and reduced- Order Filters, 3838.6 Schmidt-Kalman Filtering, 3938.7 Memory, Throughput, and wordlength Requirements, 4038.8 Ways to Reduce Computational requirements 4098.9 Error Budgets and Sensitivity Analysis, 4148.10 Optimizing Measurement Selection Policies, 4198.11 Innovations analysis, 4248.12 Summary, 425Problems. 4269 Applications to Navigation4279.1 Chapter focus, 4279.2 Host vehicle dynamics, 4319.3 Inertial Navigation Systems(INS), 4359. 4 Global Navigation Satellite Systems(GNSS), 4659.5 Kalman Filters for GNSS. 4709.6 Loosely Coupled GNSS/INS Integration, 4889.7 Tightly Coupled GNSS /INS Integration, 4919. 8 Summary, 507Problems. 508Appendix A MATLAB Software511A 1 Notice. 511A 2 General System Requirements, 511A 3 CD Directory Structure, 512A 4 MATLAB Software for Chapter 2, 512A. 5 MATLAB Software for Chapter 3, 512A6 MATLAB Software for Chapter 4, 512A. 7 MATLAB Software for Chapter 5, 513A 8 MATLAB Software for Chapter 6, 513A 9 MATLAB Software for Chapter 7, 514A10 MATLAB Software for Chapter 8, 515A 11 MATLAB Software for Chapter 9, 515A 12 Other Sources of software 516CONTENAppendix b A Matrix Refresher519B. 1 Matrix Forms. 519B 2 Matrix Operations, 523B 3 Block matrix Formulas. 527B 4 Functions of Square Matrices, 531B 5 Norms. 538B6 Cholesky decomposition, 541B7 Orthogonal Decompositions of Matrices, 543B 8 Quadratic Forms, 545B 9 Derivatives of matrices. 546Bibliography549Index565PREFACEThis book is designed to provide familiarity with both the theoretical and practicalaspects of Kalman filtering by including real-world problems in practice as illustrativeexamples. The material includes the essential technical background for Kalman filter-ing and the more practical aspects of implementation: how to represent the problem ina mathematical model, analyze the performance of the estimator as a function ofsystem design parameters, implement the mechanization equations in numericallystable algorithms, assess its computational requirements, test the validity of resultsitor the filteThetant attributes ofthe subject that are often overlooked in theoretical treatments but are necessary forapplication of the theory to real-world problemsIn this third edition, we have included important developments in the implemen-tation and application of Kalman filtering over the past several years, including adaptations for nonlinear filtering, more robust smoothing methods, and develelopingapplications in navigationWe have also incorporated many helpful corrections and suggefrom ourreaders, reviewers, colleagues, and students over the past several years for theoverall improvement of the textbookAll software has been provided in MatLab so that users can take advantage ofits excellent graphing capabilities and a programming interface that is very close tothe mathematical equations used for defining Kalman filtering and its applicationsSee Appendix a for more information on MATLAB softwareThe inclusion of the software is practically a matter of necessity because Kalmanfiltering would not be very useful without computers to implement it. It provides aMATLAB is a registered trademark of The Mathworks, IncEFACEbetter learning experience for the student to discover how the Kalman filter works byobserving it in actionThe implementation of Kalman filtering on computers also illuminates some of thepractical considerations of finite-wordlength arithmetic and the need for alternativealgorithms to preserve the accuracy of the results. If the student wishes to applywhat she or he learns, then it is essential that she or he experience its workingsand failings--and learn to recognize the differenceThe book is organized as a text for an introductory course in stochastic processes atthe senior level and as a first-year graduate-level course in Kalman filtering theory andapplicationIt can also be used for self-instruction or for purposes of review by practi-cing engineers and scientists who are not intimately familiar with the subject. Theorganization of the material is illustrated by the following chapter-level dependencygraph, which shows how the subject of each chapter depends upon material in otherchapters. The arrows in the figure indicate the recommended order of study. Boxesabove another box and connected by arrows indicate that the material represented bythe upper boxes is background material for the subject in the lower boxAPPENDIX B: A MATRIX REFRESHERGENERAL INFORMATION2. LINEAR DYNAMIC SYSTEMSRANDOM PROCESSES AND STOCHASTIC SYSTEMS4. OPTIMAL LINEAR FILTERS AND PREDICTORS5. OPTIMAL SMOOTHERS6. IMPLEMENTATIONMETHODS7. NONLINEAR8. PRACTICAL9. APPLICATIONSFILTERINGCONSIDERATIONSTO NAVIGATIONAPPENDIX A: MATLAB SOFTWAREChapter l provides an informal introduction to the general subject matter by wayof its history of development and application. Chapters 2 and 3 and Appendix b coverthe essential background material on linear systems, probability, stochastic processesand modeling. These chapters could be covered in a senior-level course in electricalcomputer, and systems engineeringChapter 4 covers linear optimal filters and predictors, with detailed examples ofapplications. Chapter 5 is a new tutorial-level treatment of optimal smoothing
    2020-12-01下载
    积分:1
  • 压缩感知序代码
    压缩感知,又称压缩采样,压缩传感。它作为一个新的采样理论,它通过开发信号的稀疏特性,在远小于Nyquist 采样率的条件下,用随机采样获取信号的离散样本,然后通过非线性重建算法完美的重建信号。压缩感知理论一经提出,就引起学术界和工业界的广泛关注。他在信息论、图像处理、地球科学、光学/微波成像、模式识别、无线通信、大气、地质等领域受到高度关注,并被美国科技评论评为2007年度十大科技进展
    2021-05-07下载
    积分:1
  • 696518资源总数
  • 106227会员总数
  • 11今日下载