现代水电厂计算机监控技术与试验.pdf
现代水电厂计算机监控技术与试验.pdf电为斌验转花丛书丛书主編文伯姜龙华现代水电厂饼算机监控赦术与试验方辉歌主编换冲主申中力归版www.Ccepp+omm.ch内了单雄多年来赛电力试验的最验,促进道电力试水平的提,中■电力企歌食会电力式验研究分金初中国咖力出组机罩了《找术凸#》,本书电力公司电紫[9】430号文《芋鬼力工业效木些督工作意的要求1用性、先性、扰性代京唱广计算了控技术与试》是本丛书之一,是一本全河反唤我水电厂自动羊害排暂查于综耄来夜棵了技柔节技意蓝技术的全过在理论面。对:分布暴能(包找对分款功分矿等单控、开欺、国向对康、斯平白暴我等邮进行了讨论在工曇实方,购常肌水坐,还对御量水控水电厂监控技术行了嫌讨。并对教件可性与件测式及堂谁认安在等业鹭书龄简5坏环是酚鉴哥始防录了《水电厂无人值赛的着干蠣定、《水幽厂计赛祖监控电厂开设膏状工的等?小最堂事射中苹水咆厂切档内赛,以方动化、站自调化进■业术是具生套考健肾,也可你为者美于业邮训矿团书在版麴目〔CP)据现代水电厂计算机监控技术与试验/方辉钦主编.北京:中国电力出版社,2004电力试验技木丛书/文伯瑜,姜龙华丛书主编}IS75083-19427I.现Ⅱ.方,Ⅲ.水力发电站-计算机控制ITv736中國版本图书馆CP效据核字(2003)第12217号中国电力出版社出版、发行北京兰里河路6号1004hp://www,cpp,com,en)航远印刷厂印刷各地新华书店经售204年3月第一版2004年3月北京第一次印刷毫米ⅹ10y毫米16开本2T即张609千字印数01-300册定价到00元煆杈专有印必究本书如有印装质量问题,我杜发行部负责退换1998年作者于三峡大坝基坑工程工地作者简介方辉钦,教授级膏级工程师,1962年毕业于华中工学院(现华中科技大学),1965年同校研究生毕业。曾在中国水利水电科学研究院、水电部第十二工程局设计院、国电自动化研究院工作,先后担任能源部南京自动化研究所学术委员会委员,自动控制研究所副总工程师,江苏省微电脑应用协会工业控制专委会主任,《水电厂自动化》网刊主编,国家电力公司发输电运营部发电设备改造咨询专家组专家、水电厂“无人值班”(少人值守验收专家组专家等职,现为中国水力发电工程学会理事,江苏省微电脑应用协会理事,中国电机工程学会高级会员,1981年被评为南京市先进工作者,1993年开始享受中华人民共和国国务院颁发的政府特殊津贴主持或作为课题负责人完成了有关葛洲坝、三峡等多个国控和部控重大科研项目,全国试点工程和中外合作项目,已合作编写了《现代水电厂自动化》、《中国水力发电工程机电卷》、《水电厂近代技术》三本书,在国家核心期刊、重点专业期刊和国际、全国学术会议上发表中、英文学术论文50多篇,其中部分被英、俄文文摘收录。参与的项目或图书曾获得部信息成果一等奖、部科技成果二等奖、科技进步奖(科技著作)一等奖和第五届国家图书奖等。电力试验技术丛常编县会主任赵鹏主编文伯瑜副主编姜龙华委员(按姓氏笔画为序)毛兴其王启全王海林白云庆白立江冯亚民史更林朱国俊巩学海刘韶林张大国张方祁太元宋志毅张怡荣张俊生张勇刚李建勋李晨余维平苑立国杨华陈坚林韩施冲赵伟赵庆波郑松赵炳松袁日秋贾玉堂顾南峰徐润生康健傅伟潘言敏““##电力试验研究是经济建设尤其是电力工业发展中一项不可或缺的事业。中外电力事业的发展,均离不开电力试验研究人员的智慧和辛勤工作。新中国成立后,尤其是改革开放以来,随着电力工业的发展,我国电力试验研究事业取得了长足的进步,电力试验研究队伍不断扩大,试验研究成果层出不穷,极大地推动了电力工业的快速发展目前我国各地区均拥有自己的电力试验研究机构,从事电力试验研究的工程技术人员超过1000人。这支队伍的文化层次也从解放初期的以中专、大专毕业生为主,提高到今天的以大学毕业生、硕士生和博士生为主。更重要的是,这是一群热爱自己的事业、勤于钻研、勇于实践的勤奋劳动者。前后几辈人相互学习,长期工作实践,积累了大量试验研究工作经验。这是他们用汗水、心血以至生命换来的、值得用文字记录并传之于后世的宝贵经验。随着电力体制改革的不断深化,使电力试验研究事业进入了竞争激烈同时又是历史上最好的发展时期。电力试验研究同行们愿意把自己的经验无私地奉献给广大读者,就是为了促进我国电力试验研究事业的进步与飞跃,促进我国电力工业的发展与兴旺,进而促进我国国民经济的增长与繁荣。本着各取所长、共同提高的初衷,我们经过长时间的准备,编辑出版《电力试验技术丛书》,相信它一定会给读者带来启发、思考和收益。华北电力科学研胶有限煮任公司总经理和m中国电力企业联合会电力试验研究分会会长2003年12月蚕营我国目前装机总容量为3.5亿kW,居世界第二。随着三峡电站机组的分批投入运行和西电东送工程的推进,到2010年全国性的大电网将初步形成。全国性电力系统运行的动态品质、安全稳定和经济性的改善与提高成为电力科技工作者肩负的重要责任。为了总结多年来我国电力试验的经验,促进我国电力试验水平的提高,中国电力企业联合会电力试验研究分会和中国电力出版社决定组织编写一套《电力试验技术丛书》,以满足国内各电力试验研究院(所)、电厂、供用电企业、电力基建单位及大专院校、科研院所对专业技术书籍的迫切需要。本系列丛书的内容主要是根据原国家电力公司电安生[1996]430号文《关于电力工业技术监督工作规定》的要求而确定的。该文中规定,“电力技术监督工作应以质量为中心、以标准为依据、以计量为手段,建立质量、标准、计量三位一体的技术监督体系,依靠科学进步,采用和推广成熟、行之有效的新技术、新方法,不断提高技术监督的专业水平”。因此,本套丛书涵盖的内容应包括电能质量、金属、化学、绝缘、热工、电测、环保、继电保护、节能等,并对设备的健康水平及其安全、经济运行方面的重要参数、性能与指标进行监督、审查、调整和评价。本丛书共分15册。丛书具有科学性、实用性、先进性、权威性。作者在写作过程中树立了精品意识和创优信念。特别感谢中国电力企业联合会电力试验研究分会,全国三十二个试验研究院(所、技术中心)的领导,我们的分册主编主要由这些单位的技术专家担任。特别感谢中国电机工程学会在组织编写中给予的大力支持。丛书主编怕翔丛书副主编姜也坪2003年12月1日本书作者在一年前就告诉我正在写一本关于水电厂计算机监控技术方面的书,我当即就表示支持并给予肯定。现在他又希望我为此书写一序,我也欣然同意。方辉钦同志原是我校(原华中工学院,现名华中科技大学)20世纪60年代为数不多的研究生之一,当时按原苏联副博士的教学要求培养,打下了良好的专业基础。三十多年来一直在水电厂自动化领域的第一线从事科研和试制工作,经历了我国水电厂计算机监控技术走向成熟的过程。曾经参加了获得中国第五届图书奖的《中国水力发电工程》之第六卷(机电卷)等三本书的编写工作,在20世纪80年代与王金生合著的《现代水电厂自动化》一书成为我国水电厂计算机监控技术的第一本专业性高级科普读物。现在本书即将出版,我为这本全面反映我国水电厂自动化行业的迅速发展和最新成果的专著的问世表示祝贺和欣慰。该书的主要特点是内容丰富,涵盖了水电厂监控使用的各种新技术,对我国水电厂监控技术发展的主要过程、不同时期各种技术发展的情况、代表产品和现状全面地进行了介绍。除常规电站外,涉及梯级、蓄能、无人值班、综合自动化、状态检修等各个方面。作者在理论研究方面作了大量工作。书中对分布系统(包括按对象分布、按功能分布等)、分层控制、开放系统、面向对象、跨平台系统等在理论上都进行了探讨,并对监控系统内部通信、外部通信、现场总线以及We浏览等都进行了讨论,同时概括了各种常用的通信规约和多种现场总线协议及应用情况,还总结了丰富的工程实践经验,理论结合实际,对软硬件试验也进行了讨论,如软件可靠性与软件测试,监控系统环境,监控系统的试验、验收及远方诊断,以及监控系统软件开发环境等。可见,这是一本兼顾学术性、工程性、系统性、实用性和前瞻性于一体的一本不可多得的好书。21世纪待建的水电工程最多的是在中国,该书的出版为总结完善中国的水电厂监控技术作了一份有益的工作。中国工程院院士多多(2003年5月本书雹管我国水电厂计算机监控技术的发展,走过了一条曲折而不平坦的道路。新中国成立后虽然我国的水电事业有了突飞猛进的发展,水电厂自动化技术的发展仍然缓慢。我国执行改革开放政策以后,1979年“全国水电站自动化技术经验交流会”的召开,对我国水电厂自动化技术的发展起到了很好的动员和推动作用。正如本书所总结的,我国水电厂计算机监控技术的发展大体上经过了探索、试点、推广、提高四个阶段。在这次会议以前的探索阶段,当时虽进行了“巡回检测”、“成组调节”、“四遥”等装置以及计算机控制技术的研究,但由于主计算机可靠性低、系统抗干扰等问题难以解决以及监控系统功能设计、设备选配、软件组织等问题而成果甚微。水电厂自动化科学技术发展七年规划(1979~1985年)的制定开始了我国水电厂监控技术发展的试点阶段。随后四个试点工程葛洲坝、富春江、浑江梯级和永定河梯级的科研工作开始启动。在试点工作取得成功以后,1987年在南京召开的“全国水电厂自动化技术总结和规划落实工作会议”和1993年在成都召开的“全国水电厂计算机监控系统工作会议”启动和落实了推广工作,分别安排了“七五”期间14个新建水电厂和12个已运行电厂启动或实现计算机监控系统的研制工作,规定“八五”期间应有40个左右大型电厂(群)实现计算机自动经济运行及安全监视,并规划到2000年大型水电厂和集中管理的梯级电站(群)都应实现不同程度的计算机监控,预期21世纪初全国大中型水电厂总装机容量的70%左右实现不同程度的计算机监控。根据2002年的统计,全国实现计算机监控的水电厂已达300座左右。原电力部安生司主持召开的1994年太平湾会议和1996年湖南会议在推广的基础上开始了“提高”的进程,提出了水电厂实现“无人值班”(少人值守)的目标。在全国水电厂和调度中心(局)的大力支持下,截止到2002年上半年,我国已有30座水电厂通过了电力工业部或国家电力公司组织的正式验收,总装机2192万kW,约占全国水电总装机的30%。在水电厂计算机监控技术的发展中,国电自动化研究院、中国水利水电科学研究院以及其他一些教学、科研、制造单位都发挥了重要的作用。方辉钦同志20世纪60年代起从事水电厂自动化领域的研究工作,曾参加电力系统水电厂经济调度计算机系统的研制和富春江水电厂综合自动化方案的制定,来院后是我院筹建时期自动控制小组七人成员之一。他参加了水电部为制定我国20世纪70年代水电厂自
- 2020-12-09下载
- 积分:1
Finite-Dimensional Vector Spaces - P. Halmos (Springer, 1987)
在学习代数学之余,值得一看的代数学书籍。里面介绍了更为丰富的代数学概念和结论。PREFACEMy purpose in this book is to treat linear transformations on finite-dimensional vector spaces by the methods of more general theories. Theidea is to emphasize the simple geometric notions common to many partsof mathematics and its applications, and to do so in a language that givesaway the trade secrets and tells the student what is in the back of the mindsof people proving theorems about integral equations and Hilbert spaces.The reader does not, however, have to share my prejudiced motivationExcept for an occasional reference to undergraduate mathematics the bookis self-contained and may be read by anyone who is trying to get a feelingfor the linear problems usually discussed in courses on matrix theory orhigher"algebra. The algebraic, coordinate-free methods do not lose powerand elegance by specialization to a finite number of dimensions, and theyare, in my belief, as elementary as the classical coordinatized treatmentI originally intended this book to contain a theorem if and only if aninfinite-dimensional generalization of it already exists, The temptingeasiness of some essentially finite-dimensional notions and results washowever, irresistible, and in the final result my initial intentions are justbarely visible. They are most clearly seen in the emphasis, throughout, ongeneralizable methods instead of sharpest possible results. The reader maysometimes see some obvious way of shortening the proofs i give In suchcases the chances are that the infinite-dimensional analogue of the shorterproof is either much longer or else non-existent.A preliminary edition of the book (Annals of Mathematics Studies,Number 7, first published by the Princeton University Press in 1942)hasbeen circulating for several years. In addition to some minor changes instyle and in order, the difference between the preceding version and thisone is that the latter contains the following new material:(1) a brief dis-cussion of fields, and, in the treatment of vector spaces with inner productsspecial attention to the real case.(2)a definition of determinants ininvariant terms, via the theory of multilinear forms. 3 ExercisesThe exercises(well over three hundred of them) constitute the mostsignificant addition; I hope that they will be found useful by both studentPREFACEand teacher. There are two things about them the reader should knowFirst, if an exercise is neither imperative "prove that.., )nor interrogtive("is it true that...?" )but merely declarative, then it is intendedas a challenge. For such exercises the reader is asked to discover if theassertion is true or false, prove it if true and construct a counterexample iffalse, and, most important of all, discuss such alterations of hypothesis andconclusion as will make the true ones false and the false ones true. Secondthe exercises, whatever their grammatical form, are not always placed 8oas to make their very position a hint to their solution. Frequently exer-cises are stated as soon as the statement makes sense, quite a bit beforemachinery for a quick solution has been developed. A reader who tries(even unsuccessfully) to solve such a"misplaced"exercise is likely to ap-preciate and to understand the subsequent developments much better forhis attempt. Having in mind possible future editions of the book, I askthe reader to let me know about errors in the exercises, and to suggest im-provements and additions. (Needless to say, the same goes for the text.)None of the theorems and only very few of the exercises are my discovery;most of them are known to most working mathematicians, and have beenknown for a long time. Although i do not give a detailed list of my sources,I am nevertheless deeply aware of my indebtedness to the books and papersfrom which I learned and to the friends and strangers who, before andafter the publication of the first version, gave me much valuable encourage-ment and criticism. Iam particularly grateful to three men: J. L. Dooband arlen Brown, who read the entire manuscript of the first and thesecond version, respectively, and made many useful suggestions, andJohn von Neumann, who was one of the originators of the modern spiritand methods that I have tried to present and whose teaching was theinspiration for this bookP、R.HCONTENTS的 FAPTERPAGRI SPACESI. Fields, 1; 2. Vector spaces, 3; 3. Examples, 4;4. Comments, 55. Linear dependence, 7; 6. Linear combinations. 9: 7. Bases, 108. Dimension, 13; 9. Isomorphism, 14; 10. Subspaces, 16; 11. Calculus of subspaces, 17; 12. Dimension of a subspace, 18; 13. Dualspaces, 20; 14. Brackets, 21; 15. Dual bases, 23; 16. Reflexivity, 24;17. Annihilators, 26; 18. Direct sums, 28: 19. Dimension of a directsum, 30; 20. Dual of a direct sum, 31; 21. Qguotient spaces, 33;22. Dimension of a quotient space, 34; 23. Bilinear forms, 3524. Tensor products, 38; 25. Product bases, 40 26. Permutations41; 27. Cycles,44; 28. Parity, 46; 29. Multilinear forms, 4830. Alternating formB, 50; 31. Alternating forms of maximal degree,52II. TRANSFORMATIONS32. Linear transformations, 55; 33. Transformations as vectors, 5634. Products, 58; 35. Polynomials, 59 36. Inverses, 61; 37. Mat-rices, 64; 38. Matrices of transformations, 67; 39. Invariance,7l;40. Reducibility, 72 41. Projections, 73 42. Combinations of pro-jections, 74; 43. Projections and invariance, 76; 44. Adjoints, 78;45. Adjoints of projections, 80; 46. Change of basis, 82 47. Similarity, 84; 48. Quotient transformations, 87; 49. Range and null-space, 88; 50. Rank and nullity, 90; 51. Transformations of rankone, 92 52. Tensor products of transformations, 95; 53. Determinants, 98 54. Proper values, 102; 55. Multiplicity, 104; 56. Triangular form, 106; 57. Nilpotence, 109; 58. Jordan form. 112III ORTHOGONALITY11859. Inner products, 118; 60. Complex inner products, 120; 61. Innerproduct spaces, 121; 62 Orthogonality, 122; 63. Completeness, 124;64. Schwarz e inequality, 125; 65. Complete orthonormal sets, 127;CONTENTS66. Projection theorem, 129; 67. Linear functionals, 130; 68. P aren, gBCHAPTERtheses versus brackets, 13169. Natural isomorphisms, 138;70. Self-adjoint transformations, 135: 71. Polarization, 13872. Positive transformations, 139; 73. Isometries, 142; 74. Changeof orthonormal basis, 144; 75. Perpendicular projections, 14676. Combinations of perpendicular projections, 148; 77. Com-plexification, 150; 78. Characterization of spectra, 158; 79. Spec-ptral theorem, 155; 80. normal transformations, 159; 81. Orthogonaltransformations, 162; 82. Functions of transformations, 16583. Polar decomposition, 169; 84. Commutativity, 171; 85. Self-adjoint transformations of rank one, 172IV. ANALYSIS....17586. Convergence of vectors, 175; 87. Norm, 176; 88. Expressions forthe norm, 178; 89. bounds of a self-adjoint transformation, 17990. Minimax principle, 181; 91. Convergence of linear transformations, 182 92. Ergodic theorem, 184 98. Power series, 186APPENDIX. HILBERT SPACERECOMMENDED READING, 195INDEX OF TERMS, 197INDEX OF SYMBOLS, 200CHAPTER ISPACES§L. FieldsIn what follows we shall have occasion to use various classes of numbers(such as the class of all real numbers or the class of all complex numbers)Because we should not at this early stage commit ourselves to any specificclass, we shall adopt the dodge of referring to numbers as scalars. Thereader will not lose anything essential if he consistently interprets scalarsas real numbers or as complex numbers in the examples that we shallstudy both classes will occur. To be specific(and also in order to operateat the proper level of generality) we proceed to list all the general factsabout scalars that we shall need to assume(A)To every pair, a and B, of scalars there corresponds a scalar a+called the sum of a and B, in such a way that(1) addition is commutative,a+β=β+a,(2)addition is associative, a+(8+y)=(a+B)+y(3 there exists a unique scalar o(called zero)such that a+0= a forevery scalar a, and(4)to every scalar a there corresponds a unique scalar -a such that十(0(B)To every pair, a and B, of scalars there corresponds a scalar aBcalled the product of a and B, in such a way that(1)multiplication is commutative, aB pa(2)multiplication is associative, a(Br)=(aB)Y,( )there exists a unique non-zero scalar 1 (called one)such that al afor every scalar a, and(4)to every non-zero scalar a there corresponds a unique scalar a-1or-such that aaSPACES(C)Multiplication is distributive with respect to addition, a(a+n)If addition and multiplication are defined within some set of objectsscalars) so that the conditions(A),B), and (c)are satisfied, then thatset(together with the given operations) is called a field. Thus, for examplethe set Q of all rational numbers(with the ordinary definitions of sumand product)is a field, and the same is true of the set of all real numberaand the set e of all complex numbersHHXERCISIS1. Almost all the laws of elementary arithmetic are consequences of the axiomsdefining a field. Prove, in particular, that if 5 is field and if a, and y belongto 5. then the following relations hold80+a=ab )Ifa+B=a+r, then p=yca+(B-a)=B (Here B-a=B+(a)(d)a0=0 c=0.(For clarity or emphasis we sometimes use the dot to indi-cate multiplication.()(-a)(-p)(g).If aB=0, then either a=0 or B=0(or both).2.(a)Is the set of all positive integers a field? (In familiar systems, such as theintegers, we shall almost always use the ordinary operations of addition and multi-lication. On the rare occasions when we depart from this convention, we shallgive ample warningAs for "positive, "by that word we mean, here and elsewherein this book, "greater than or equal to zero If 0 is to be excluded, we shall say"strictly positive(b)What about the set of all integers?(c) Can the answers to these questiong be changed by re-defining addition ormultiplication (or both)?3. Let m be an integer, m2 2, and let Zm be the set of all positive integers lessthan m, zm=10, 1, .. m-1). If a and B are in Zmy let a +p be the leastpositive remainder obtained by dividing the(ordinary) sum of a and B by m, andproduct of a and B by m.(Example: if m= 12, then 3+11=2 and 3. 11=9)a) Prove that i is a field if and only if m is a prime.(b What is -1 in Z5?(c) What is囊izr?4. The example of Z, (where p is a prime)shows that not quite all the laws ofelementary arithmetic hold in fields; in Z2, for instance, 1 +1 =0. Prove thatif is a field, then either the result of repeatedly adding 1 to itself is always dif-ferent from 0, or else the first time that it is equal to0 occurs when the numberof summands is a prime. (The characteristic of the field s is defined to be 0 in thefirst case and the crucial prime in the second)SEC. 2VECTOR SPACES35. Let Q(v2)be the set of all real numbers of the form a+Bv2, wherea and B are rational.(a)Ie(√2) a field?(b )What if a and B are required to be integer?6.(a)Does the set of all polynomials with integer coefficients form a feld?(b)What if the coeficients are allowed to be real numbers?7: Let g be the set of all(ordered) pairs(a, b)of real numbers(a) If addition and multiplication are defined by(a月)+(,6)=(a+y,B+6)and(a,B)(Y,8)=(ary,B6),does s become a field?(b )If addition and multiplication are defined by(α,月)+⑦,b)=(a+%,B+6)daB)(,b)=(ay-6a6+的y),is g a field then?(c)What happens (in both the preceding cases)if we consider ordered pairs ofcomplex numbers instead?§2. Vector spaceWe come now to the basic concept of this book. For the definitionthat follows we assume that we are given a particular field s; the scalarsto be used are to be elements of gDEFINITION. A vector space is a set o of elements called vectors satisfyingthe following axiomsQ (A)To every pair, a and g, of vectors in u there corresponds vectora t y, called the aum of a and y, in such a way that(1)& ddition is commutative,x十y=y十a(2)addition is associative, t+(y+2)=(+y)+a(3)there exists in V a unique vector 0(called the origin) such thata t0=s for every vector and(4)to every vector r in U there corresponds a unique vector -rthat c+(-x)=o(B)To every pair, a and E, where a is a scalar and a is a vector in u,there corresponds a vector at in 0, called the product of a and a, in sucha way that(1)multiplication by scalars is associative, a(Bx)=aB)=, and(2 lz a s for every vector xSPACESSFC B(C)(1)Multiplication by scalars is distributive with respect to vectorddition, a(+y=a+ ag, and2)multiplication by vectors is distributive with respect to scalar ad-dition, (a B )r s ac+ Bc.These axioms are not claimed to be logically independent; they aremerely a convenient characterization of the objects we wish to study. Therelation between a vector space V and the underlying field s is usuallydescribed by saying that v is a vector space over 5. If S is the field Rof real number, u is called a real vector space; similarly if s is Q or if gise, we speak of rational vector spaces or complex vector space§3. ExamplesBefore discussing the implications of the axioms, we give some examplesWe shall refer to these examples over and over again, and we shall use thenotation established here throughout the rest of our work.(1) Let e(= e)be the set of all complex numbers; if we interpretr+y and az as ordinary complex numerical addition and multiplicatione becomes a complex vector space2)Let o be the set of all polynomials, with complex coeficients, in avariable t. To make into a complex vector space, we interpret vectoraddition and scalar multiplication as the ordinary addition of two poly-nomials and the multiplication of a polynomial by a complex numberthe origin in o is the polynomial identically zeroExample(1)is too simple and example (2)is too complicated to betypical of the main contents of this book. We give now another exampleof complex vector spaces which(as we shall see later)is general enough forall our purposes.3)Let en,n= 1, 2,. be the set of all n-tuples of complex numbers.Ix=(1,…,轨)andy=(m1,…,n) are elements of e, we write,,bdefinitionz+y=〔1+叽,…十物m)0=(0,…,0),-inIt is easy to verify that all parts of our axioms(a),(B), and (C),52, aresatisfied, so that en is a complex vector space; it will be called n-dimenaionalcomplex coordinate space
- 2020-12-05下载
- 积分:1