-
作品展示
说明: 利用Python,使用Arima模型对时间序列进行建模预测,结果中包含原始数据、建模全部代码以及预测结果可视化。(Using python, ARIMA model is used to model and predict time series. The results include raw data, modeling code and visualization of prediction results.)
- 2020-11-06 18:09:49下载
- 积分:1
-
pairmatching_real
说明: 手动实现LM算法代码,开头读取文件请忽略(self-developed LM algorithm)
- 2020-07-05 20:52:40下载
- 积分:1
-
users_spider_new
微博爬虫,用于爬去某地点附近发生的签到事件,并将数据写入xls文件(Microblogging reptile, used to climb to a place near the attendance event, and write data to the xls file)
- 2016-12-26 12:28:54下载
- 积分:1
-
百富S80 POS机支付实现
第一次接触POS支付开发,不知该从何着手,看过别人的示例代码,才知晓POS支会分两步。
首先是初始化POS机,只有初始化POS机后,才可以在POS机上签到。
接下来,接下来当然是交易了。
其实,不知道怎么下手时觉得很难,所谓难者不会,会者不难。
- 2022-02-03 22:49:48下载
- 积分:1
-
exp_2_1
Iris数据集,计算协方差矩阵和相关系数矩阵和kl变换(The goal of this programming experiment is to:
Calculate the covariance matrix and the correlation coefficient matrix of the Iris data set. Perform the Karhunen-Loeve transform on this data set.)
- 2017-10-06 15:31:48下载
- 积分:1
-
fenlei
说明: 利用深度学习进行遥感图像场景分类
这里我们对NWPU-RESISC45数据集的场景图像进行分类
我们将卷积神经网络应用于图像分类。我们从头开始训练数据集。此外,还应用了预先训练的VGG16 abd ResNet50进行迁移学习。(Scene Classification of Remote Sensing Images Using Deep Learning
Here we classify scene images from NWPU-RESISC45 dataset
We apply convolutional neural network to image classification. We start training data sets from scratch. In addition, a pre-trained VGG16 abd ResNet50 is used for migration learning.)
- 2021-03-31 20:19:08下载
- 积分:1
-
RF
说明: 用随机森林方法对因变量的影响因素进行特征选择,即影响度排序(Using random forest method to select the factors affecting the dependent variable, that is, the order of influence)
- 2019-10-28 16:26:45下载
- 积分:1
-
mobilefacenet-V2-master
基于python语言的适用于移动端应用的开源人脸识别算法mobilefacenet算法(Open source face recognition algorithm for mobile applications based on Python language)
- 2021-01-05 09:28:54下载
- 积分:1
-
《Python数据分析与应用:从数据获取到可视化》源代码
【实例简介】
- 2021-05-18 10:33:57下载
- 积分:1
-
DBScan-master
这是使用Python实现的DBScan。像Numpy、熊猫这样的图书馆也被使用过。DBScan算法已经在两个变色龙数据集t4.8k和t5.8k上进行了测试。然后利用matplotlib将得到的结果可视化。为了便于比较,本文将所得到的输出结果与DBScan实现的skLearning库的结果进行了比较。计算每个数据集的同质性和分离度,以观察簇间的相似性和不同的度量。epsilon和min值分别为8.5和16.5。(This is a DBScan implemented using Python. Libraries like Numpy and Panda have also been used. DBScan algorithm has been tested on two chameleon datasets t4.8k and t5.8k. Then the results are visualized by matplotlib. In order to facilitate comparison, the output results are compared with those of skLearning library implemented by DBScan. The homogeneity and segregation of each data set are calculated to observe the similarity and different measures between clusters. Epsilon and min were 8.5 and 16.5 respectively.)
- 2019-06-13 18:33:28下载
- 积分:1