登录
首页 » Matlab » 2D PHASE UNWRAPPING ALGORITHMS

2D PHASE UNWRAPPING ALGORITHMS

于 2022-03-06 发布 文件大小:40.03 kB
0 68
下载积分: 2 下载次数: 1

代码说明:

Run QualityGuidedUnwrap2D for the phase quality guided phase unwrapping method. Run GoldsteinUnwrap2D for Goldstein"s branch cut phase unwrapping method. (3D implementation of the quality guided method available on request)

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • Duda_book_patten_recgnition_computer_experiment_Ma
    Duda教授出的书《模式分类》课后上机题,Matlab源代码和答案(Professor Duda out of the book 《Pattern Classification》,after-school-on question, Matlab source code and answers)
    2010-12-12 16:24:52下载
    积分:1
  • monituihuoTSP
    说明:  matlab写的退火算法,解决旅行商问题(matlab write annealing algorithm to solve traveling salesman problem)
    2008-11-11 14:58:24下载
    积分:1
  • points2contour
    封闭二维图形的最小自由相邻链接 Connect Randomly Ordered 2D Points into a Minimal Nearest-Neighbor Closed Contour(Connect Randomly Ordered 2D Points into a Minimal Nearest-Neighbor Closed Contour)
    2012-04-27 13:38:21下载
    积分:1
  • three
    多传感器数据融合:matlab仿真程序实现多传感器数据融合算法(Multi-sensor data fusion: matlab simulation program to achieve multi-sensor data fusion algorithm)
    2020-06-30 23:20:02下载
    积分:1
  • 支持向量机
    支持向量机(Support Vector Machines ,SVM)由 Vapnik 1995年最早提出,通过核函数的展开定理,在某种程度上避免了“维数灾难”,并且在解决小样本、非线性和高维模式识别中表现出了独有的优势,引起很多学者的重视,取得一定的研究成果,并且被许多学者推广应用到其他机器学习领域中。
    2022-05-21 02:35:27下载
    积分:1
  • 数字信号处理的小例子
    数字信号处理的小例子-digital signal processing small examples
    2022-07-06 20:09:19下载
    积分:1
  • m06_QASK
    设置参数,创建输入信号,计算和显示比特误差率,绘制图形.(Set parameters, create the input signal, calculate and display bit error rate, draw graphics.)
    2010-11-06 21:17:21下载
    积分:1
  • OFDM16QAM
    OFDM中采用的16QAM的simulink实现(OFDM16QAM)
    2009-05-15 11:00:10下载
    积分:1
  • pcaexpressprot
    We propose an algorithm for facial expression recognition which can classify the given image into one of the seven basic facial expression categories (happiness, sadness, fear, surprise, anger, disgust and neutral). PCA is used for dimensionality reduction in input data while retaining those characteristics of the data set that contribute most to its variance, by keeping lower-order principal components and ignoring higher-order ones. Such low-order components contain the "most important" aspects of the data. The extracted feature vectors in the reduced space are used to train the supervised Neural Network classifier. This approach results extremely powerful because it does not require the detection of any reference point or node grid. The proposed method is fast and can be used for real-time applications.
    2010-04-15 23:51:35下载
    积分:1
  • mainc
    main cal use add
    2011-11-22 13:33:29下载
    积分:1
  • 696516资源总数
  • 106459会员总数
  • 0今日下载