-
生成对抗网络在mnist数据集上的源代码
说明: 生成对抗网络,亲测可用,带有说明,有利于初学者学习(Generate confrontation network, pro-test available, with instructions)
- 2021-03-24 15:39:14下载
- 积分:1
-
scienceData
cctv7科技苑爬虫项目,insert-mysql(CCTV7 reptile project, insert-mysql)
- 2020-06-18 15:40:02下载
- 积分:1
-
Python深度学习
说明: 本书由Keras之父、现任Google A工智能研究员的弗朗索瓦?肖莱(Frangois Chollet)执笔,详尽介 绍了用Python和Keras进行深度学习的探索实践,涉及计算机视觉、自然语言处理、生成式模型等应用。 书中包含30多个代码示例,步骤讲解详细透彻。由于本书立足于人工智能的可达性和大众化,读者无须 具备机器学习相关背景知识即可展开阅读。在学习完本书后,读者将具备搭建自己的深度学习环境、建立 图像识别模型、生成图像和文字等能力(This book is written by Frangois Chollet, the father of keras and the current researcher of Google a intelligence. It introduces in detail the exploration and practice of deep learning with Python and keras, involving computer vision, natural language processing, generative model and other applications. The book contains more than 30 code examples, and the steps are detailed and thorough. Because this book is based on the accessibility and popularization of artificial intelligence, readers can read it without having the background knowledge of machine learning. After learning this book, readers will have the ability to build their own deep learning environment, establish image recognition model, and generate images and characters)
- 2021-01-08 19:49:44下载
- 积分:1
-
python疫情数据可视化
说明: 通过时事数据可视化系统,可以清楚地了解全球疫情分布的状况以及密度,以便做出相应的对策(Through the current affairs data visualization system, it is possible to clearly understand the distribution and density of the global epidemic in order to make corresponding countermeasures)
- 2021-03-05 10:19:31下载
- 积分:1
-
csdn博客下载器导出器
csdn博客下载器( python scrapy 爬取一个csdn id的所有博客成文件) 完成csdn博客下载器,导出器的功能.
- 2023-07-04 07:05:05下载
- 积分:1
-
nn_bp
说明: 可以修改各种参数,输出可视化,迭代次数与误差收敛曲线(Parameters can be modified)
- 2020-12-26 22:19:02下载
- 积分:1
-
基于OPENMV的颜色追踪 与ST32一次性传输 X Y坐标
OPENMV捕捉到颜色模块,并处理他的目标,得出X Y值 并加入串口检验位 此次校验位为 字符sp
- 2019-07-25下载
- 积分:1
-
DNN for Image Classification
说明: TensorFlow 不是一个严格的“神经网络”库。只要你可以将你的计算表示为一个数据流图,你就可以使用Tensorflow。你来构建图,描写驱动计算的内部循环。我们提供了有用的工具来帮助你组装“子图”(常用于神经网络)(Build and train ML models easily using intuitive high-level APIs like Keras with eager execution, which makes for immediate model iteration and easy debugging.)
- 2019-03-17 09:55:52下载
- 积分:1
-
sph1d.tar
Python implementation of 1D SPH schemes
- 2013-11-28 06:17:15下载
- 积分:1
-
基于PyTorch的深度学习技术进步.pdf
基于PyTorch的深度学习技术进步.pdf
- 2019-12-28下载
- 积分:1