-
fixedbeam
经典麦克风语音增强算法,当阵元数目越多,语音增强效果越好(Classical microphone speech enhancement algorithm, the more the number of elements, the better the speech enhancement effect)
- 2018-07-22 19:31:17下载
- 积分:1
-
mhmm_logprob
语音识别的hmm技术,对做语音识别的朋友很有帮助
(Hmm speech recognition technology, speech recognition make friends very helpful)
- 2008-03-27 09:17:37下载
- 积分:1
-
AEC
基于LMS算法和NLMS算法的自适应声回波消除器AEC,实现的主要功能是:在用户对电视发出的指令混杂了电视扬声器的声学回声的情况下,滤掉电视声音得到较为纯净的用户语音指令信号。(The main function of the adaptive filter based on the LMS algorithm and the NLMS algorithm is mixed: in the instruction issued by the user on the television TV speakers acoustic echo case, the TV sound was removed by filtration to obtain relatively pure user voice command signal.)
- 2012-10-29 16:49:47下载
- 积分:1
-
GMM_SID
用于说话人识别(声纹识别)中训练过程和识别过程的高斯混合模型程序(GMM model for the training process or test process of speaker identification)
- 2012-08-16 11:39:59下载
- 积分:1
-
dct
在平台上找到的滑动/移动DCTII算法,都是用不了的,尤其是用于LMS,根本不适用,查了国内外论文,遍了程序,供大家参考(In PUDN,most DCT programm are not fit to LMS adaptive filter. with several literatures, this programm is finished for LMS filter.)
- 2020-12-14 16:49:14下载
- 积分:1
-
yuyinzengqiang
用三种经典的方法对语音信号进行增强,效果还不错并且三种方法的比较(With three classical methods of speech signal enhancement, the results were good and Comparison of Three Methods)
- 2016-07-17 17:42:29下载
- 积分:1
-
语音信号处理赵力(中文入门)
很好的一本关于语音信号处理的书,而且是中文版的,比较好用(A good book about the processing of speech signal)
- 2021-01-11 21:38:49下载
- 积分:1
-
espeak-1.46.02-source
一款语音和成软件,主要是文本转语音,包括英文、普通话等(text change to speak)
- 2021-01-03 18:18:56下载
- 积分:1
-
VoiceDemo02
语音识别 安卓源代码 和siri一样的音控软件
轻松掌握其中的原理(Speech recognition Anzhuo Yuan code and siri sound control software easily grasp the principle)
- 2013-04-24 20:22:26下载
- 积分:1
-
ABSE
熵值越大则每个符号包含的平均信息量越大。有研究发现,在有噪声的语音信号中,语音信号的熵和噪声信号的熵存在着较大的差异,对噪声信号来说在整个频带内分布相对平坦,熵值小,语音信号集中在某些特定频段内,熵值大。因此利用这个差异可以区分噪音段和语音段。(The greater the entropy is, the greater the average information of each symbol is. It is found that, in noisy speech signals, the entropy of speech signals and the entropy of noise signals are quite different. For noisy signals, the distribution is relatively flat in the whole frequency band, and the entropy value is small. The speech signal is concentrated in some specific frequency bands, and the entropy value is large. So the difference can be used to distinguish the noise segment and the speech segment.)
- 2020-11-02 21:29:54下载
- 积分:1