-
图像识别代码集
HOG LBP 在python matlab C++环境下的实现(Implementation of HOG LBP in Python matlab C++ environment)
- 2019-05-24 15:05:36下载
- 积分:1
-
Python装饰器的几个简单实例
8个实例简单介绍Python装饰器的实现。包含参数,执行效果等:#/usr/bin/env python#-*- coding:utf-8 -*-"""两个装饰器的执行顺序是outer_0 开头输入前outer_1 123原函数 呵呵outer_1 456outer_0 加法结果等于"""#哪个装饰器先执行就先执行谁的,比如将outer_0和outer_1调转,其实就是也可以把一个装饰器outer_1当做参数传入outer_0#装饰器主要运用于权限设置def outer_0(func): def inner(*args, **kwargs): print("开头输入前") ret = func(*args, **kwargs) print("加法结果等于",ret,"
") return ret return innerdef outer_1(func): def inner(*args, **kwargs): print("123") ret = func(*args, **kwargs) &
- 2022-08-25 11:18:16下载
- 积分:1
-
window
搭建简单的界面,并调用深度学习植物叶片识别模型,实现一些植物叶片的分类。(Build a simple interface, and call in-depth learning plant leaf recognition model to achieve some plant leaf classification.)
- 2018-11-29 18:56:14下载
- 积分:1
-
matplot
说明: 生成随机漫步,设置标题,并给标题加上标签(Generating Random Walks)
- 2020-06-17 23:40:02下载
- 积分:1
-
CNN
说明: cnn深度学习框架,实现手写字符识别。适用于新手学习(CNN deep learning framework for handwritten character recognition)
- 2019-03-26 09:52:26下载
- 积分:1
-
Unet-master2
说明: CN对图像进行像素级的分类,从而解决了语义级别的图像分割(semantic segmentation)问题。与经典的CNN在卷积层之后使用全连接层得到固定长度的特征向量进行分类(全联接层+softmax输出)不同,FCN可以接受任意尺寸的输入图像,采用反卷积层对最后一个卷积层的feature map进行上采样, 使它恢复到输入图像相同的尺寸,从而可以对每个像素都产生了一个预测, 同时保留了原始输入图像中的空间信息, 最后在上采样的特征图上进行逐像素分类。(CN classifies images at the pixel level, thus resolving the problem of semantic segmentation at the semantic level. Unlike classical CNN, which uses full-connection layer to get fixed-length feature vectors after convolution layer for classification (full-connection layer + soft Max output), FCN can accept any size of input image, and uses deconvolution layer to sample feature map of the last convolution layer to restore it to the same size of input image, so that each pixel can be generated. At the same time, the spatial information of the original input image is retained. Finally, the pixel-by-pixel classification is carried out on the feature map sampled above.)
- 2019-04-19 19:16:29下载
- 积分:1
-
邻域粗糙集属性约简
说明: 利用邻域粗糙集进行属性约简,里面加入了8个数据集,有离散型数据,连续性数据,字母型数据。因此程序也加入了数据类型转换和归一化处理。程序函数在最下面部分。(using the neighborhood rough set to attribute reduction)
- 2021-04-02 22:29:07下载
- 积分:1
-
Django测试
Django测试,Django测试Django测试,Django测试,Django测试,Django测试,Django测试,Django测试,Django测试,Django测试,Django测试,Django测试,Django测试,Django测试,Django测试,Django测试,Django测试,Django测试,Django测试,Django测试,Django测试,Django测试,Django测试,Django测试,Django测试,Django测试,Django测试,Django测试,Django测试,Django测试,Django测试,Django测试,Django测试,Django测试,Django测试,Django测试,Django测试,Django测试,
- 2022-02-25 03:55:40下载
- 积分:1
-
改进后程序
说明: 使用paddle框架基于卷积神经网络的手写数字识别(Handwritten digit recognition based on convolutional neural network using paddle framework)
- 2020-05-01 13:27:01下载
- 积分:1
-
MasteringMachineLearningWithscikit-learn
在这本书里,我们将看到一些机器学习的模型和算法。我们会介绍一些常用的机器学习任务和模型的效果评估方法。而这些模型和算法都是通过十分流行的Python机器学习库scikit-learn来完成,里面有许多机器学习的模型和算法,每个API都简单易用(In this book, we will look at some machine learning models and algorithms.We will introduce some commonly used methods for evaluating the effects of machine learning tasks and models.These models and algorithms are built using the popular Python machine learning library scikit-learn, which has many machine learning models and algorithms, and each API is easy to use)
- 2020-06-20 11:20:02下载
- 积分:1