-
mainMATLABfunction
按功能分类介绍了matlab中主要函数的使用,很方便。(Functional classification, introduced by the main function matlab use, very convenient.)
- 2007-10-25 11:25:20下载
- 积分:1
-
bss
此程序主要是解决忙信号的线性分离的,将混合的未知信号尽可能的恢复出来,使之能够辨别。(The procedure is to solve the linear separation of busy signals, the mixed signals as far as possible the recovery of the unknown out, so that it can identify.)
- 2010-12-01 20:24:46下载
- 积分:1
-
合成地震记录seismic_syn.m
合成地震记录, 勘探地球物理基础代码, 有详细的注释帮助大家理解(Synthetic seismograms, exploration geophysical base codes, detailed comments to help you understand.)
- 2018-03-31 11:17:13下载
- 积分:1
-
IIR
使用matlab实现设计IIR滤波器:冲激不变法、双线性变换法
设计一个巴特沃思低通滤波器,其技术指标为:3dB带宽为,阻带截止频率为,阻带衰减大于30dB,采样间隔T=10us。
1)用冲激响应不变法
2)用双线性变换法设计
3)用FIR的矩形窗函数设计
二、用双线性变换法分别设计低通、高通、带通、带阻四种滤波器。模拟滤波器带原型分别为切比雪夫滤波器和椭圆滤波器,采样率Fs=20kHz,指标如下:
1)低通:通带0~4 kHz,阻带5 kHz,通带衰减Rp=0.5dB,阻带衰减As=10dB。
2)高通:阻带0~4 kHz,通带5 kHz,通带衰减Rp=0.5dB,阻带衰减As=10dB。
3)带通:通带2kHz~4 kHz,阻带0~1.5 kHz,4.5kHz以上,通带衰减Rp=0.5dB,阻带衰减As=10dB。
4)带阻:阻带2kHz~4 kHz,通带0~1.5 kHz,4.5kHz以上,通带衰减Rp=0.5dB,阻带衰减As=10dB。(Using MATLAB to implement the design of IIR filters: impulse invariant and bilinear transformation)
- 2018-01-06 15:19:26下载
- 积分:1
-
DWT-Watermark
discrete wavelet transform for image watermarking
- 2010-10-10 18:43:45下载
- 积分:1
-
Chapter_1-figure_1_2
elshebri book solutions source codes
- 2011-07-14 01:37:03下载
- 积分:1
-
all
RLS和LSL、LMS三种算法的自适应滤波程序及其应用与比较(RLS and LSL, LMS three kinds of adaptive filtering algorithm and its application procedure and comparison of)
- 2010-01-04 13:04:38下载
- 积分:1
-
antenna-pattern
采用了一种简化的方向图模型。方位和俯仰均用高斯型。(Direction using a simplified graph model. Azimuth and elevation are used Gaussian.)
- 2011-02-11 19:51:43下载
- 积分:1
-
Bland-Altman
用matlab编写的进行Bland-Altman统计分析的程序。(A program using matlab for Bland-Altman statistical analysis.)
- 2013-09-14 15:21:04下载
- 积分:1
-
HE-de-Oliveira--legdinfo
Spherical harmonic wavelets or Legendre wavelets are compactly supported wavelets, which are derived from Legendre polynomials. These wavelets are suitable for problems of spherical symmetry since they correspond to the colatitudinal part of "spherical harmonics" in spherical polar coordinates.
reference URL
- 2013-04-05 21:35:51下载
- 积分:1