登录
首页 » python » NAO机器人挥手

NAO机器人挥手

于 2022-12-06 发布 文件大小:10.95 kB
0 101
下载积分: 2 下载次数: 1

代码说明:

简单的NAO机器人挥手动作,choregraphe上可以使用模拟

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • Galileo_singlefrequency
    Galileo单频定位程序,能基于rinex文件实现高精度定位,供编写时参考(Galileo single-frequency positioning program can achieve high-precision positioning based on RINEX file for reference when writing.)
    2020-07-04 14:20:01下载
    积分:1
  • PyTorch教程
    说明:  PyTorch是一个开源的Python机器学习库,基于Torch,用于自然语言处理等应用程序。(Pytorch is an open source Python machine learning library, based on torch, used for natural language processing and other applications.)
    2021-01-24 20:06:17下载
    积分:1
  • teardrop_smb
    针对早期windows系统SMB协议的攻击 前提时先安装安装python 在命令提示符窗口中首先进入py命令所在的文件夹 直接键入python xx.py后回车确认(Attacks on SMB Protocol of Early Windows System Install Python first First enter the folder where the PY command resides in the command prompt window Type Python xx.py directly and return to confirm)
    2020-06-23 15:40:02下载
    积分:1
  • pysot-toolkit-master
    说明:  目标跟踪算法评测集。可以评测vot otb got10k等数据集。(Evaluation set of target tracking algorithm. It can evaluate data sets such as VOT OTB got10k.)
    2020-11-19 21:25:56下载
    积分:1
  • Internet-socket
    用于TCP,UCP协议进行通讯(For TCP, UCP protocol for communication)
    2017-06-08 20:43:04下载
    积分:1
  • grid
    网格搜索法寻找最优的惩罚因子,SVM,经测试可以用(SVM find C gamma)
    2012-01-03 17:48:46下载
    积分:1
  • djangobook
    django book for developing networking applications
    2014-11-26 23:11:25下载
    积分:1
  • SCUC
    2022-02-04 07:59:31下载
    积分:1
  • 自动提取应力结果保存
    说明:  采用Python写的abaqus自动提取应力结果的命令(A command written by Python to automatically extract stress results from ABAQUS)
    2021-03-03 11:59:33下载
    积分:1
  • joint_sparse_algorithms-master
    说明:  我们描述了所提出的方法对超声(US)信号的压缩多路复用的直接应用。该技术利用压缩多路复用器架构进行信号压缩,并依靠频域中US信号的联合稀疏性进行信号重建。由于换能器元件具有压电特性,因此可以获得有关US信号频率支持的准确先验知识,并且可以在联合稀疏算法中使用。 我们在数值实验中验证了所提出的方法,并显示了它们在秩次缺陷情况下相对于最新方法的优越性。我们还证明,与没有已知支持的重建相比,该技术可显着提高体内颈动脉图像的图像质量。(We describe a direct application of the proposed methods for compressive multiplexing of ultrasound (US) signals. The technique exploits the compressive multiplexer architecture for signal compression and relies on joint-sparsity of US signals in the frequency domain for signal reconstruction. Due to piezo-electric properties of transducer elements, accurate prior knowledge of the frequency support of US signals is available and can be used in joint-sparse algorithms. We validate the proposed methods on numerical experiments and show their superiority against state-of-the-art approaches in rank-defective cases. We also demonstrate that the techniques lead to a significant increase of the image quality on in vivo carotid images compared to reconstruction without known support.)
    2020-03-16 16:45:38下载
    积分:1
  • 696518资源总数
  • 105949会员总数
  • 22今日下载