登录
首页 » Matlab » 经典无网格教程的随书算法的例程,属于第二章例程

经典无网格教程的随书算法的例程,属于第二章例程

于 2022-12-25 发布 文件大小:10.20 kB
0 34
下载积分: 2 下载次数: 1

代码说明:

经典无网格教程的随书算法的例程,属于第二章例程-Classical meshless algorithm tutorial with the book routines, routines that belong to the second chapter

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • Bibliographie_Chapitre5
    matlab image coding for watermarking image
    2010-03-13 01:49:04下载
    积分:1
  • finite-element-sparse-matrix
    有限元稀疏矩阵的保存和提取,基于ANSYS提取稀疏矩阵后在matlab中的重新整理。(Preservation and extraction of finite element sparse matrix)
    2012-05-01 15:18:53下载
    积分:1
  • WCDMAsource
    WCDMA的MATLAB仿真程序,供参考学习 (WCDMA system analysis)
    2014-11-04 21:39:55下载
    积分:1
  • PSO-SVM
    用粒子群算法PSO,优化支持向量机SVM,提高故障分类精度。(Using particle swarm optimization (PSO, optimization of support vector machine SVM, improve the fault classification accuracy.)
    2021-03-01 10:49:35下载
    积分:1
  • hilbert
    说明:  希尔伯特变换代码,用于求解超声波形包络线。并且有平滑处理(Hilbert transform code for solving ultrasonic envelopes. And smoothing)
    2019-05-13 15:37:40下载
    积分:1
  • MPI
    Fortran进行并行计算的讲稿,台湾网站上下的。(Fortran for parallel computing of the script, Taiwan Web site from top to bottom.)
    2010-06-28 21:59:24下载
    积分:1
  • shengxuezhenliedingxiangjingdufenxi
    两种声学阵列的定两种声学阵列的定向精度分析与仿真向精度分析与仿真(Two acoustic arrays of two sets of directional acoustic array analysis and simulation accuracy to the accuracy of analysis and simulation)
    2008-03-17 21:42:23下载
    积分:1
  • work
    matlab 关于association rule 的自己写的函数,有3个文件, association.m:h = association(m, i, j) i=>j, m是数据,h是support和confidence,该函数只适用于单个数据 ass_item: h=ass_itset(m, a, b) 同上,但是可用于多个数据(m为数组) assrule: h = assrule(m, threshold1, threshold2) 该函数用于classification, 得到规则,threshold1为要求的support,threshold2为要求的confidence,h 则为符合要求的规则及其support和confidence,前2列为规则,后2列为其support和confidence (matlab on the association rule to write functions, there are 3 files, association.m: h = association (m, i, j) i => j, m is the data, h is the support and confidence, this function applies only to a single Data ass_item: h = ass_itset (m, a, b) it is the same as above, but it can be used for multiple data (m can be matrix) assrule: h = assrule (m, threshold1, threshold2) the function used for classification,get the rules, threshold1 is the require of support, threshold2 is the required of confidence, h is the rules and their support and confidence, the former two columns as a rule, the latter two columns as one of its support and confidence)
    2009-12-15 02:51:44下载
    积分:1
  • monituih
    用模拟退火算法解决0-1问题,能运行,效果好(0-1 with a simulated annealing algorithm to solve the problem to run)
    2010-12-06 16:37:04下载
    积分:1
  • smple1
    simple fuzzy rule base
    2011-01-22 11:51:13下载
    积分:1
  • 696518资源总数
  • 106016会员总数
  • 2今日下载