-
softmaxregression
softmaxregression,即多分类的逻辑斯特回归算法,python编写(softmaxregression, namely multi-classification logistic regression algorithm, python write)
- 2014-01-07 20:26:26下载
- 积分:1
-
Python数据分析与挖掘实战--源代码
python datamining python 数据挖掘实战(python datamining Data mining practice useful code in study)
- 2017-08-15 14:31:20下载
- 积分:1
-
000
说明: 实现搜索功能 在百度百科中自由发挥 是随意搜索 不对的另找(Implementing Search Function)
- 2019-03-26 10:53:31下载
- 积分:1
-
program
用于sms数据处理,为fvcom准备输入文件(prepare for FVCON input file)
- 2021-01-05 17:08:54下载
- 积分:1
-
廖雪峰 2018官方Python3教程(二)
【实例简介】
- 2021-09-10 00:31:11下载
- 积分:1
-
excel2json
说明: Excel 转为 json格式, python3 代码(Excel converted to json format, code written in python3)
- 2019-05-19 05:22:44下载
- 积分:1
-
周志华《机器学习》学习笔记
说明: 机器学习是计算机科学与人工智能的重要分支领域. 本书作为该领域的入门教材,在内容上尽可能涵盖机器学习基础知识的各方面。 为了使尽可能多的读者通过本书对机器学习有所了解, 作者试图尽可能少地使用数学知识. 然而, 少量的概率、统计、代数、优化、逻辑知识似乎不可避免. 因此, 本书更适合大学三年级以上的理工科本科生和研究生, 以及具有类似背景的对机器学 习感兴趣的人士. 为方便读者, 本书附录给出了一些相关数学基础知识简介。(Machine learning is an important branch of computer science and artificial intelligence. As an introductory textbook in this field, this book covers all aspects of basic knowledge of machine learning as much as possible. In order to make as many readers as possible understand machine learning through this book, the author tries to use mathematical knowledge as little as possible. However, a small amount of probability, statistics, algebra, optimization, logic knowledge seems inevitable. Therefore, this book is more suitable for undergraduates and postgraduates of science and engineering above the third grade of University, And people who are interested in machine learning with similar background. For the convenience of readers, the appendix of this book gives a brief introduction of some basic mathematical knowledge.)
- 2020-05-29 17:29:21下载
- 积分:1
-
SOM神经网络
说明: SOM神经网络算法python代码,详细的表达了SOM神经网络算法的计算过程(SOM neural network algorithm python code, the detailed expression of SOM neural network algorithm calculation process)
- 2020-05-09 23:15:21下载
- 积分:1
-
Python机器学习
第1章 赋予计算机学习数据的能力
1.1 构建智能机器将数据转化为知识
1.2 机器学习的三种不同方法
1.2.1 通过监督学习对未来事件进行预测
1.2.2 通过强化学习解决交互式问题
1.2.3 通过无监督学习发现数据本身潜在的结构
1.2.4 基本术语及符号介绍
1.3 构建机器学习系统的蓝图(Chapter 1 Enables Computers to Learn Data
1.1 Building Intelligent Machines to Transform Data into Knowledge
1.2 Three Different Methods of Machine Learning
1.2.1 Prediction of future events through supervised learning
1.2.2 Solving Interactive Problems through Reinforcement Learning
1.2.3 Discovering the Potential Structure of Data by Unsupervised Learning
1.2.4 Introduction of Basic Terminology and Symbols
1.3 Blueprint for Building Machine Learning System)
- 2019-06-06 16:10:09下载
- 积分:1
-
pe实现rva和offset的转换
pe实现rva和offset的转换。 将可执行程序pe中的rva和offset相互转化。
- 2022-03-01 01:32:42下载
- 积分:1