-
9781118961742Python3-6Code
机器视觉,OPENCV学习,深度学习源码。(Machine vision, OPENCV learning, in-depth learning source code.)
- 2020-06-18 12:20:01下载
- 积分:1
-
飞机大战
使用pygame框架写的飞机大战毕设,可以运行
- 2022-02-24 21:39:57下载
- 积分:1
-
简易的串口通讯程序,包括GUI和串口通讯功能,以供学习 pyserial_demo
简易的串口通讯程序,包括GUI和串口通讯功能,以供学习(Simple serial communication program, including GUI and serial communication functions, for learning)
- 2020-06-25 04:20:01下载
- 积分:1
-
图形用户界面和游戏开发
说明: python图形界面tkinter等的详细介绍和案例演练,教你用pygame库开发属于你的小游戏(Python graphical interface Tkinter and other detailed introduction and case drill, teach you to use pyGame library to develop your own games)
- 2020-06-10 20:26:04下载
- 积分:1
-
GA-SVM-master 03
这是一个基于python的gasvm程序,编写很规范,容易理解,适合初学者学习(This is a python-based gasvm program, written very standardized, easy to understand, suitable for beginners to learn)
- 2021-04-20 20:18:50下载
- 积分:1
-
Car_ID
说明: 用于识别车牌的代码,采用图像识别和文字识别代码。(The python code to recognize car id number.)
- 2019-06-08 13:56:42下载
- 积分:1
-
abaqus
abaqus 施加周期性边界条件脚本,通过General_Mpc_Cube输入正确的模型和部件文件运行。(ABAQUS applies periodic boundary conditions to scripts)
- 2021-03-17 17:19:20下载
- 积分:1
-
similarity
count the distance of word net
- 2013-09-21 06:20:55下载
- 积分:1
-
神经网络
说明: (1)使用Python实现样本从输入层到隐层传输。
(2)使用Python实现网络输出。
(3)使用Python实现单样本网络训练。
(4)使用Python实现全样本网络训练。
(5)使用Python评价所构建的网络模型性能。
(6)调用sklearn实现神经网络算法。((1) using Python to implement the sample transfer from the input layer to the hidden layer.
(2) using Python to achieve network output.
(3) using Python to realize single sample network training.
(4) using Python to realize full sample network training.
(5) using Python to evaluate the performance of the network model.
(6) call sklearn to implement the neural network algorithm.)
- 2019-11-28 23:18:35下载
- 积分:1
-
第5章
说明: 在许多情况下,利用深度学习算法搭建的神经网络模型都需妥进行某 种形式的优化。 这非常重要,只有经过优化的网络,才能在训练之后达到 不错的解决问题的效果。 优化的最直接目的就是使参数更加准确地更新。 一般神经网络的训练过程大致可以分为两个阶段:第一个阶段先通过 前向传播算法计算得到预测值,并将预测值和真实值做对比,得出两者之 间的差距;在第二个阶段,通过反向传播算法计算损失函数对每一个参数 的梯度,再根据梯度和学习率使用梯度下降算法更新每一个参数。(In many cases, the neural network model built by deep learning algorithm needs to be optimized in some form. This is very important, only after the optimization of the network, in order to achieve good results in solving problems after training. The most direct purpose of optimization is to update parameters more accurately. The training process of general neural network can be roughly divided into two stages: in the first stage, the predicted value is calculated by the forward propagation algorithm, and the difference between the predicted value and the real value is obtained; in the second stage, the loss function is calculated by the back-propagation algorithm for each parameter According to the gradient and learning rate, the gradient descent algorithm is used to update each parameter.)
- 2020-09-14 16:18:29下载
- 积分:1