-
Python3.6.8安装包下载
64位3.6.8安装包
- 2020-12-10下载
- 积分:1
-
基于维基百科语料库的word2vec词向量模型的训练
这是一个利用python语言,基于维基百科语料库的word2vec词向量模型的训练,用非常主流的算法实现文本形式向计算机能够识别的形式的转换,然后用于文本分类
- 2022-01-21 21:44:52下载
- 积分:1
-
统计自然语言处理-刘挺
机器学习实战,主要关于推荐系统,聚类分析,使用语言为python(maching learning in action)
- 2018-04-26 09:23:36下载
- 积分:1
-
mfrl-master
说明: 平均场的python代码,大家有需要可以看看(Python code about mean field. You can download if you need.)
- 2020-06-18 17:00:02下载
- 积分:1
-
python实现简易spice仿真器
利用python实现了一个简易的spice仿真器,支持电阻、电容、电感、电压源、电流源等线性元件和二极管、MOSFET非线性元件的解析和仿真,支持.op、.dc、.ac、.tran仿真命令。
- 2022-01-25 22:17:02下载
- 积分:1
-
python接口测试脚本
这是我的python接口测试脚本,用python语言借助request包发送接口请求,本脚本先发送登录接口请求再从登录接口返回里提取AccessToken和ID作为下一个接口请求的参数。
- 2022-07-18 22:15:05下载
- 积分:1
-
MongoDB-and-Python
系统介绍用mongdb编写python的注意事项及实例,以及mongdb编写的网络框架!(System Introduction written mongdb python precautions and examples, as well as networking framework mongdb prepared!)
- 2016-12-27 09:59:41下载
- 积分:1
-
AbaqusGUI程序开发指南(Python语言)配套资源
说明: 《AbaqusGUI程序开发指南(Python语言)》配套资源(Matching Resources of Abaqus GUI Programming Guide (Python Language))
- 2020-06-22 23:40:01下载
- 积分:1
-
MPCPy
MPCPY是一个Python程序包,它有助于测试和实现用于构建系统的乘员集成模型预测控制(MPC)。该软件包侧重于使用数据驱动的、简化的物理或统计模型来预测建筑性能和优化控制。四个主要模块包含对象类来导入数据,与真实的或仿真的系统交互,估计和验证数据驱动的模型,并优化控制输入。(MPCPy is a python package that facilitates the testing and implementation of occupant-integrated model predictive control (MPC) for building systems. The package focuses on the use of data-driven, simplified physical or statistical models to predict building performance and optimize control. Four main modules contain object classes to import data, interact with real or emulated systems, estimate and validate data-driven models, and optimize control input.)
- 2020-11-23 08:49:34下载
- 积分:1
-
py-faster-rcnn-master
图像检测的算法,Faster R-CNN算法,先对整张图像进行卷积计算,然后通过感兴趣区域池化层(RoI Pooling Layer)将选择性搜索算法推荐出来的候选区域和卷积网络计算出的特征映射图进行融合,得到候选区域对应的特征矢量,这种共享卷积计算的操作极大地减少了卷积计算的次数。而且这些特征矢量的维度统一,方便后续的分类工作。通过感兴趣区域池化层处理卷积特征,并将得到的特征送往两个并行计算任务进行训练,分类和定位回归。通过这些方法和改进的框架,Fast R-CNN 用更短的训练和测试时长,取得了比 R-CNN 更好的效果(Faster R-CNN algorithm first convolutes the whole image, then fuses the candidate regions recommended by the selective search algorithm and the feature mapping maps calculated by the convolution network through the RoI Pooling Layer to get the corresponding feature vectors of the candidate regions, which greatly reduces the number of convolution calculations. Moreover, the dimension of these feature vectors is unified, which facilitates the subsequent classification work. The convolution feature is processed by the pooling layer of the region of interest, and the obtained feature is sent to two parallel computing tasks for training, classification and positioning regression. Through these methods and improved framework, Fast R-CNN uses shorter training and testing time and achieves better results than R-CNN.)
- 2020-12-11 15:39:18下载
- 积分:1