登录
首页 » matlab » TE_run_example

TE_run_example

于 2010-10-16 发布 文件大小:2KB
0 151
下载积分: 1 下载次数: 31

代码说明:

  2DFDTDTE波模拟仿真,采用CPML边界条件(2DFDTDTE wave simulation using the boundary conditions CPML)

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • Drawing
    Matlab各种绘图方法的相关算法大全及其简介(Matlab a variety of mapping methods and its correlation algorithm Daquan Profile)
    2009-02-02 09:58:49下载
    积分:1
  • vsismes
    基于matlab/simulink的电流源型SMES仿真(Based on matlab/simulink simulation of current source type SMES)
    2010-11-30 10:28:20下载
    积分:1
  • envelop_by_xcorr
    Matlab 自相关方法求声音信号包络源代码及说明(Method Matlab autocorrelation envelope of the voice signal and note the source code)
    2009-04-26 11:39:59下载
    积分:1
  • 20067711495121046
    matlab例程,非常好用,便以移植,bianyuxuexi(matlab routines, very easy to use, then to transplant, bianyuxuexi)
    2009-04-26 17:04:55下载
    积分:1
  • fcm1
    模糊聚类算法,经过改进,自己输入初值,经过运行,能出结果(Fuzzy clustering algorithm, improved their initial input, after operation, the results can)
    2009-05-19 09:55:02下载
    积分:1
  • MAS-Model
    Asynchronous machine model in Park (dq) frame
    2011-04-21 01:54:14下载
    积分:1
  • 1.6-last
    programs in matlab designing
    2014-12-13 13:25:58下载
    积分:1
  • chengxu
    用蒙塔卡罗搜索方法从所测量值中获取误差最小值,并求出误差(With the Mundaka Luo search method from the measured value of minimum error is obtained, and the calculated error)
    2013-11-14 15:47:00下载
    积分:1
  • matlab
    聚类算法,不是分类算法。分类算法是给一个数据,然后判断这个数据属于已分好的类中的具体哪一类。聚类算法是给一大堆原始数据,然后通过算法将其中具有相似特征的数据聚为一类。这里的k-means聚类,是事先给出原始数据所含的类数,然后将含有相似特征的数据聚为一个类中。所有资料中还是Andrew Ng介绍的明白。首先给出原始数据{x1,x2,...,xn},这些数据没有被标记的。初始化k个随机数据u1,u2,...,uk。这些xn和uk都是向量。根据下面两个公式迭代就能求出最终所有的u,这些u就是最终所有类的中心位置。(Clustering algorithm, not a classification algorithm. Classification algorithm is to give a figure, and then determine the data belonging to a specific class of good which category. Clustering algorithm is to give a lot of raw data, and then through the algorithm which has similar characteristics data together as a class. Here k-means clustering, is given in advance the number of classes contained in the raw data, then the data contain similar characteristics together as a class. All information presented in or Andrew Ng understand. Firstly, raw data {x1, x2, ..., xn}, the data is not labeled. K random initialization data u1, u2, ..., uk. These are the vectors xn and uk. According to the following two formulas can be obtained final iteration all u, u is the ultimate all these classes the center position.)
    2014-02-18 09:59:02下载
    积分:1
  • JDS-396
    lectures for singular spectrum analysis
    2010-08-02 23:34:31下载
    积分:1
  • 696518资源总数
  • 105873会员总数
  • 12今日下载