登录
首页 » Others » abne

abne

于 2009-11-02 发布 文件大小:1KB
0 135
下载积分: 1 下载次数: 2

代码说明:

  Average based noise estimation

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • NSGA_II
    NSGA_II多目标优化算法,用于工程优化计算,很好很强大(NSGA_II)
    2010-10-19 11:02:06下载
    积分:1
  • AMhalftoning
    matlab 调pin加网matlab 调幅加网matlab 调幅加网matlab 调幅加网(matlab matlabmatlab matlabmatlab matlabmatlab matlab)
    2021-04-28 11:28:43下载
    积分:1
  • paper1
    Adaptive Sparse Channel Estimation for Time-Variant MIMO-OFDM Systems
    2015-03-20 23:45:56下载
    积分:1
  • Matlab
    Herewith i attached the files for contingency, bus impedance matrix,short circuit fault current and swing curve
    2012-01-30 14:23:12下载
    积分:1
  • Power-HVDC-12-Pulse-Average
    This file is HVDC 12 Pulse Average
    2020-10-27 21:39:58下载
    积分:1
  • chenchen_new
    二进制,四进制,8进制霍夫曼编解码。内含测试编码文件以及解码文件。(Binary, quaternary, 8-band codec Hoffman. Intron encoding the test documents and decoding files.)
    2007-10-25 21:12:39下载
    积分:1
  • deleteModelGenes
    预测得到最优代谢通量分布而进行最适单基因敲除的例程(Predicted the optimal metabolic flux distribution for optimal single-gene knock-out of the routine)
    2008-01-11 20:30:43下载
    积分:1
  • PCA
    PCA算法,用于用于主分量分析,挺好用的!!!!!!!!!(PCA algorithm for principal component analysis used, very good use! ! ! ! ! ! ! ! !)
    2009-05-14 09:26:13下载
    积分:1
  • MyKmeans
    实现聚类K均值算法: K均值算法:给定类的个数K,将n个对象分到K个类中去,使得类内对象之间的相似性最大,而类之间的相似性最小。 缺点:产生类的大小相差不会很大,对于脏数据很敏感。 改进的算法:k—medoids 方法。这儿选取一个对象叫做mediod来代替上面的中心 的作用,这样的一个medoid就标识了这个类。步骤: 1,任意选取K个对象作为medoids(O1,O2,…Oi…Ok)。 以下是循环的: 2,将余下的对象分到各个类中去(根据与medoid最相近的原则); 3,对于每个类(Oi)中,顺序选取一个Or,计算用Or代替Oi后的消耗—E(Or)。选择E最小的那个Or来代替Oi。这样K个medoids就改变了,下面就再转到2。 4,这样循环直到K个medoids固定下来。 这种算法对于脏数据和异常数据不敏感,但计算量显然要比K均值要大,一般只适合小数据量。(achieving K-mean clustering algorithms : K-means algorithm : given the number of Class K, n will be assigned to target K to 000 category, making target category of the similarity between the largest category of the similarity between the smallest. Disadvantages : class size have no great difference for dirty data is very sensitive. Improved algorithms : k-medoids methods. Here a selection of objects called mediod to replace the center of the above, the logo on a medoid this category. Steps : 1, arbitrary selection of objects as K medoids (O1, O2, Ok ... ... Oi). Following is a cycle : 2, the remaining targets assigned to each category (in accordance with the closest medoid principle); 3, for each category (Oi), the order of selection of a Or, calculated Oi Or replace the consumption-E (Or))
    2005-07-26 01:32:58下载
    积分:1
  • ReconocimientoRostros
    Describe Describe Describe Describe Describe Describe Describe Describe Describe Describe
    2013-08-27 01:08:09下载
    积分:1
  • 696518资源总数
  • 105877会员总数
  • 14今日下载