-
hht
希尔伯特黄变换(HHT)的 完整 MATLAB程序 (Hilbert Huang Transform (HHT) of the complete MATLAB program)
- 2021-03-06 11:19:30下载
- 积分:1
-
baiguangyanshe
白光衍射很好的matlab仿真程序,可以运行实现的。(Bai Guangyan shoot good matlab simulation program can be run to achieve.)
- 2013-11-12 10:48:34下载
- 积分:1
-
MATLAB-GPS-data-processing
利用MATLAB实时处理GPS数据,:利用MATLAB软件环境,现场接收并实时处理海上地球物理调查过程中的GPS定位数据,剔除原始数据中的跳点,处理定位误差.(Real-time GPS data processing, using MATLAB: using the MATLAB software environment, the site receives and real-time processing GPS positioning in the process of Marine geophysical survey data, eliminating hops in the raw data, processing positioning error.)
- 2013-12-06 11:11:04下载
- 积分:1
-
FEMTOCELL
Femtocell. Wireless communication introduction
- 2014-01-03 23:15:27下载
- 积分:1
-
tp1
L utilisation d intégrateurs limités permet de "clamper" à 0 la valeur basse de Ired et de Vs. Simulink simule des équations mathématiques dans lesquelles le comportement unidirectionnel des semi conducteurs n est pas exprimé. Sans cette précaution, un courant Ired<0 pourrait apparaî tre en régime transitoire.
- 2013-05-13 20:59:13下载
- 积分:1
-
TLzscannomatrix
由于非线性光学中计算非线性折射系数的数值模拟(as calculated nonlinear optical nonlinear refractive index of numerical simulation)
- 2006-12-30 12:41:26下载
- 积分:1
-
ImageRetrieval-master-(2)
image retrieval,content based image retrieval
- 2013-12-05 19:25:49下载
- 积分:1
-
chap11
vc++matlab图像处理与识别分章代码下载11(vc++ matlab image processing and recognition of sub-chapter code 11 download)
- 2009-03-28 09:53:32下载
- 积分:1
-
matlab_bgl-4.0.1
MatlabBGL provides robust and efficient graph algorithms for Matlab using native data structures.
- 2010-01-12 18:54:29下载
- 积分:1
-
MyKmeans
实现聚类K均值算法: K均值算法:给定类的个数K,将n个对象分到K个类中去,使得类内对象之间的相似性最大,而类之间的相似性最小。 缺点:产生类的大小相差不会很大,对于脏数据很敏感。 改进的算法:k—medoids 方法。这儿选取一个对象叫做mediod来代替上面的中心 的作用,这样的一个medoid就标识了这个类。步骤: 1,任意选取K个对象作为medoids(O1,O2,…Oi…Ok)。 以下是循环的: 2,将余下的对象分到各个类中去(根据与medoid最相近的原则); 3,对于每个类(Oi)中,顺序选取一个Or,计算用Or代替Oi后的消耗—E(Or)。选择E最小的那个Or来代替Oi。这样K个medoids就改变了,下面就再转到2。 4,这样循环直到K个medoids固定下来。 这种算法对于脏数据和异常数据不敏感,但计算量显然要比K均值要大,一般只适合小数据量。(achieving K-mean clustering algorithms : K-means algorithm : given the number of Class K, n will be assigned to target K to 000 category, making target category of the similarity between the largest category of the similarity between the smallest. Disadvantages : class size have no great difference for dirty data is very sensitive. Improved algorithms : k-medoids methods. Here a selection of objects called mediod to replace the center of the above, the logo on a medoid this category. Steps : 1, arbitrary selection of objects as K medoids (O1, O2, Ok ... ... Oi). Following is a cycle : 2, the remaining targets assigned to each category (in accordance with the closest medoid principle); 3, for each category (Oi), the order of selection of a Or, calculated Oi Or replace the consumption-E (Or))
- 2005-07-26 01:32:58下载
- 积分:1