登录
首页 » matlab » classification_matlab_toolbox

classification_matlab_toolbox

于 2005-04-18 发布 文件大小:1531KB
0 166
下载积分: 1 下载次数: 103

代码说明:

  classification_matlab_toolbox分类方法工具箱,有界面很直观。(classification_matlab_toolbox classification toolbox, a very intuitive interface.)

文件列表:

classification_matlab_toolbox_by cbir@smth
..........................................\Classification_toolbox

..........................................\......................\Ada_Boost.m
..........................................\......................\ADDC.m
..........................................\......................\AGHC.m
..........................................\......................\Backpropagation_Batch.m
..........................................\......................\Backpropagation_CGD.m
..........................................\......................\Backpropagation_Quickprop.m
..........................................\......................\Backpropagation_Recurrent.m
..........................................\......................\Backpropagation_SM.m
..........................................\......................\Backpropagation_Stochastic.m
..........................................\......................\Balanced_Winnow.m
..........................................\......................\Bayesian_Model_Comparison.m
..........................................\......................\Bhattacharyya.m
..........................................\......................\BIMSEC.m
..........................................\......................\C4_5.m
..........................................\......................\calculate_error.m
..........................................\......................\calculate_region.m
..........................................\......................\CART.m
..........................................\......................\CARTfunctions.m
..........................................\......................\Cascade_Correlation.m
..........................................\......................\Chernoff.m
..........................................\......................\chess.mat
..........................................\......................\Classification.txt
..........................................\......................\classification_error.m
..........................................\......................\classifier.m
..........................................\......................\classifier.mat
..........................................\......................\classifier_commands.m
..........................................\......................\click_points.m
..........................................\......................\clouds.mat
..........................................\......................\Competitive_learning.m
..........................................\......................\Components_without_DF.m
..........................................\......................\Components_with_DF.m
..........................................\......................\contents.m
..........................................\......................\decision_region.m
..........................................\......................\Deterministic_annealing.m
..........................................\......................\Deterministic_Boltzmann.m
..........................................\......................\Deterministic_SA.m
..........................................\......................\Discrete_Bayes.m
..........................................\......................\Discriminability.m
..........................................\......................\DSLVQ.m
..........................................\......................\EM.m
..........................................\......................\enter_distributions.m
..........................................\......................\enter_distributions.mat
..........................................\......................\enter_distributions_commands.m
..........................................\......................\feature_selection.m
..........................................\......................\feature_selection.mat
..........................................\......................\Feature_selection.txt
..........................................\......................\feature_selection_commands.m
..........................................\......................\FindParameters.m
..........................................\......................\FindParameters.mat
..........................................\......................\FindParametersFunctions.m
..........................................\......................\find_classes.m
..........................................\......................\FishersLinearDiscriminant.m
..........................................\......................\four_spiral.mat
..........................................\......................\fuzzy_k_means.m
..........................................\......................\GaussianParameters.m
..........................................\......................\GaussianParameters.mat
..........................................\......................\generate_data_set.m
..........................................\......................\Genetic_Algorithm.m
..........................................\......................\Genetic_Culling.m
..........................................\......................\Genetic_Programming.m
..........................................\......................\Gibbs.m
..........................................\......................\HDR.m
..........................................\......................\high_histogram.m
..........................................\......................\Ho_Kashyap.m
..........................................\......................\ICA.m
..........................................\......................\ID3.m
..........................................\......................\Infomat.m
..........................................\......................\Interactive_Learning.m
..........................................\......................\Kohonen_SOFM.m
..........................................\......................\Koller.m
..........................................\......................\k_means.m
..........................................\......................\Leader_Follower.m
..........................................\......................\LMS.m
..........................................\......................\load_file.m
..........................................\......................\Local_Polynomial.m
..........................................\......................\LocBoost.m
..........................................\......................\LocBoostFunctions.m
..........................................\......................\loglikelihood.m
..........................................\......................\LS.m
..........................................\......................\LVQ1.m
..........................................\......................\LVQ3.m
..........................................\......................\make_a_draw.m
..........................................\......................\Marginalization.m
..........................................\......................\MDS.m
..........................................\......................\Minimum_Cost.m
..........................................\......................\min_spanning_tree.m
..........................................\......................\ML.m
..........................................\......................\ML_diag.m
..........................................\......................\ML_II.m
..........................................\......................\multialgorithms.m
..........................................\......................\multialgorithms.mat
..........................................\......................\multialgorithms_commands.m
..........................................\......................\Multivariate_Splines.m
..........................................\......................\NDDF.m
..........................................\......................\NearestNeighborEditing.m
..........................................\......................\Nearest_Neighbor.m
..........................................\......................\NLPCA.m

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • matlabDesign
    Analysis.and.Design.of.Control.System.Using.MATLAB外文经典书目(Analysis.and.Design.of.Control.System.Using.MATLAB language classic bibliography)
    2013-02-05 16:22:49下载
    积分:1
  • pb1d
    说明:  声波二阶方程空间十阶时间二阶在一维情况下的变网格数值模拟(Second-order wave equation of second order in time space 10 in One-Dimensional Numerical Simulation of Variable Grid)
    2010-04-28 20:02:57下载
    积分:1
  • jointhsuhuj
    联合对角化,对信号进行预处理,处理信号,作为信号分离的预处理(Joint diagonalization of the signal preprocessing, signal processing, signal separation as pre)
    2013-09-17 15:36:21下载
    积分:1
  • 456
    本程序运行需要几分钟时间;两个M文件都放在MATLAB目录下;在命令窗口中输入lianxuwuran(t),回车即可运行,(This program takes a few minutes Two MATLAB M-files are placed in the directory Enter lianxuwuran (t) in the command window, press Enter to run)
    2014-01-01 12:59:12下载
    积分:1
  • ex3
    V-BLAST结构的ZF检测算法性能,分别在无干扰消除和有干扰消除的系统性能(ZF detection algorithm performance V-BLAST structure, respectively, and there is no interference to eliminate interference cancellation system performance)
    2016-01-04 18:50:09下载
    积分:1
  • mmea(20090630)
    说明:  mmea进化算法,学习的典范,可以直接运行的,呵呵(mmea evolutionary algorithm, learning model, can run, huh, huh)
    2011-03-01 22:15:15下载
    积分:1
  • 龙格库塔法求解了齿轮系统6自由度的动力学方
    采用龙格库塔法求解了齿轮系统6自由度的动力学方程。绘制了系统时域响应以及频域内的分岔图。(Solving the gear transmission system s dynamic equations by Rung-Kutta .Drawing the time spectrum as well as the bifurcation of the system)
    2021-03-20 15:39:18下载
    积分:1
  • draggablecc
    Allows graphical objects to be dragged in a figure
    2013-10-25 17:06:07下载
    积分:1
  • Codes
    智能控制第二版刘金琨著。 本书较全面地叙述了智能控制的基本理论、方法和应用。此代码为次数的附带程序。(Intelligent Control Second Edition was written by Liu Jin_Kun. This book describes more fully the intelligent control of the basic theory, methods and applications. This code is the number of accompanying program.)
    2013-11-22 11:21:35下载
    积分:1
  • NRPowerFlow
    3节点,牛拉法潮流计算程序,适合初学者。(3 nodes, NR Power Flow Program. Suitable for beginners)
    2012-08-03 19:58:52下载
    积分:1
  • 696518资源总数
  • 106155会员总数
  • 8今日下载