-
3_2Niv_Comp
说明: C’est avec un grand plaisir que je remercie M Franç ois Costa, M Jean Luc Schanen et M
Faouzi Ben Ammar qui ont accepté de faire partie de mon jury de thèse.
Des remerciements aussi chaleureux vont à mes collègues du CEGELY avec qui j’ai partagé
ces années de travail, je pense à tout(e)s les doctorant(e)s ainsi qu’au personnel permanent (la
liste est longue et je suis sû r qu’ils vont se reconnaî tre facilement).
Je réserve la fin de mes remerciements à ma famille pour leur soutien quotidien.
- 2011-04-16 22:51:55下载
- 积分:1
-
Adaptive_particle_swarm_algorithm
自适应粒子群算法,自适应粒子群算法,在普通的粒子群算法里面加入了熵和平均粒距的概念,收敛速度大大提高,而且不容易陷入局部最优,能更有效的解决复杂问题。(Adaptive particle swarm algorithm, adaptive particle swarm optimization, in which ordinary PSO joined the entropy and the concept of average distance, speed up the convergence, but not easy to fall into local optimum, more effective solutions to complex problems.)
- 2010-05-07 08:13:00下载
- 积分:1
-
adaption
自适应滤波器的应用.经过调试,最终得出的结果(滤波图象)很好,所以就上载了.(adaptive filter applications. After debugging, and ultimately the results (filter images) is very good. So on the set.)
- 2007-01-02 00:05:09下载
- 积分:1
-
tiaozhi_shibie
调制识别的传统算法,
零中心归一化瞬时幅度的谱密度的最大值
零中心归一化瞬时幅度绝对值得标准偏差
零中心非弱信号段瞬时相位非线性分量绝对值的标准偏差
零中心非弱信号段瞬时相位非线性分量的标准偏差
零中心归一化非弱信号段瞬时频率绝对值得标准偏差(Traditional modulation recognition algorithm, the zero center owned by an instantaneous amplitude of the spectral density of the maximum zero center owned by one of the instantaneous amplitude is definitely worth the nonlinear component of the instantaneous phase of the absolute value of standard deviation of zero-center non-weak signal segment, standard deviation of zero center weak signal segment of the standard deviation of the nonlinear component of the instantaneous phase zero center owned by the instantaneous frequency of a non-weak signal segment is definitely worth the standard deviation)
- 2011-06-28 15:10:44下载
- 积分:1
-
zhuanxianghuizheng
matlab下的simulink实现转向回正功能的模型(Under the model simulink matlab function to achieve a positive turning back)
- 2014-10-02 19:52:39下载
- 积分:1
-
gpml-matlab-v1.3-2006-09-08
说明: 高斯过程(GP)模型中推理和预测的实现。它实现了在《Rasmussen & Williams:机器学习的高斯过程》(麻省理工学院出版社,2006)和《Nickisch & Rasmussen:二进制高斯过程分类的近似》(JMLR, 2008)中讨论的算法。该函数的优点在于灵活性、简单性和可扩展性。该函数具有一定的灵活性,首先通过定义均值函数和协方差函数来确定遗传算法的性质。其次,它允许指定不同的推理过程,如精确推理和期望传播(EP)。第三,它允许指定似然函数,如高斯函数或拉普拉斯函数(用于回归)和累积逻辑函数(用于分类)。简单性是通过一个简单的函数和紧凑的代码实现的。可扩展性是通过模块化设计来保证的,允许为已经相当广泛的推理方法、均值函数、协方差函数和似然函数库轻松添加扩展。(Gaussian Processes for Machine Learning , the MIT press, 2006 and Nickisch & Rasmussen: Approximations for Binary Gaussian Process Classification , JMLR, 2008. The strength of the function lies in its flexibility, simplicity and extensibility. The function is flexible as firstly it allows specification of the properties of the GP through definition of mean function and covariance functions. Secondly, it allows specification of different inference procedures, such as e.g. exact inference and Expectation Propagation (EP). Thirdly it allows specification of likelihood functions e.g. Gaussian or Laplace (for regression) and e.g. cumulative Logistic (for classification). Simplicity is achieved through a single function and compact code.)
- 2020-02-26 20:39:48下载
- 积分:1
-
Desktop
matlab中的定位算法的大集合,希望对你有用,研究生的研究内容,很有价值(Matlab algorithm positioning of the large collection of, hope to be useful to you, the graduate student research cont)
- 2011-12-25 22:36:53下载
- 积分:1
-
pm_haar
MATLAB函数为pm哈尔1-D DWT算法
离散哈尔的基本原理小波变换(MATLAB function for pm Haar 1-D DWT algorithm,Fundamentals of the discrete Haar wavelet transform)
- 2013-11-23 22:28:31下载
- 积分:1
-
CJ-Scheme-IA
CJ-干扰对齐多用户以及单用户的代码学习(CJ- interference alignment multi-user and single user code learning)
- 2017-04-26 13:43:06下载
- 积分:1
-
stprtool
统计模式识别工具箱(Statistical Pattern Recognition Toolbox)包含:
1,Analysis of linear discriminant function
2,Feature extraction: Linear Discriminant Analysis
3,Probability distribution estimation and clustering
4,Support Vector and other Kernel Machines(
This section should give the reader a quick overview of the methods implemented in
STPRtool.
• Analysis of linear discriminant function: Perceptron algorithm and multiclass
modification. Kozinec’s algorithm. Fisher Linear Discriminant. A collection
of known algorithms solving the Generalized Anderson’s Task.
• Feature extraction: Linear Discriminant Analysis. Principal Component Analysis
(PCA). Kernel PCA. Greedy Kernel PCA. Generalized Discriminant Analysis.
• Probability distribution estimation and clustering: Gaussian Mixture
Models. Expectation-Maximization algorithm. Minimax probability estimation.
K-means clustering.
• Support Vector and other Kernel Machines: Sequential Minimal Optimizer
(SMO). Matlab Optimization toolbox based algorithms. Interface to the
SVMlight software. Decomposition approaches to train the Multi-class SVM classifiers.
Multi-class BSVM formulation trained by Kozinec’s algorithm, Mitchell-
Demyanov-Molozenov algorithm )
- 2009-03-13 17:03:40下载
- 积分:1