-
BNT_SLP.tar
说明: 动态贝叶斯网络结构学习算法,用来检验基于BOA的DBN结构寻优体系的合理性与可行性。环境matlab 6.1以上(Dynamic Bayesian network structure learning algorithm, the DBN used to test the structure-based optimization BOA system is reasonable and feasible. Environmental matlab 6.1 or above)
- 2011-03-13 20:17:54下载
- 积分:1
-
winer
说明: 对被噪声污染的灰度图像进行滤波,是一种自适应滤波器。(denoiseing for the gray scale image)
- 2010-04-23 14:18:51下载
- 积分:1
-
logistic
给出罗杰斯蒂克的分岔图的matlab程序(Rogers Mystic gives the bifurcation diagram of the matlab program)
- 2011-06-09 23:43:52下载
- 积分:1
-
Neyman
Good to implement Neyman Pearson hypthesis test in Matlab
- 2013-12-10 11:56:21下载
- 积分:1
-
osp
A Comparative Study for Orthogonal Subspace
Projection and Constrained
Energy Minimization
- 2013-12-17 15:24:21下载
- 积分:1
-
two_level_FOC
针对异步电动机转子磁链定向的矢量控制系统,逆变部分采用的三电平拓扑结构,算法是采用的传统的SVPWM调制方法。(For the vector control system of induction motor rotor flux orientation, the three level topology is adopted in the inverter, and the algorithm is the traditional SVPWM modulation method.)
- 2016-12-29 19:46:49下载
- 积分:1
-
67506282mahalanobis
说明: 马氏距离的仿射不变性删除误匹配特征点
对,据此可求取2幅源图像间的仿射变换参数(Mahalanobis distance of the affine invariant features remove the false matching points
Yes, according to the source to obtain two parameter affine transformation between images)
- 2010-04-11 17:24:32下载
- 积分:1
-
Emotion-Recognition
Human Emotion Recognition using modified Gabor as a feture extraction and SVM classifier
- 2014-10-15 14:58:15下载
- 积分:1
-
efficient-convolution
零延时卷积算法实现,基于fft变换。Efficient Convolution Without Latency by
William G. Gardner(It is well known that a block FFT implementation of convolution is vastly more efficient than the direct
form FIR filter. Unfortunately, block processing incurs significant input/output latency which is undesirable
for real-time applications. A hybrid method is proposed for doing convolution by combining direct form
and block FFT processing. The result is a zero latency convolver that performs significantly better than
direct form methods.)
- 2015-02-13 15:39:09下载
- 积分:1
-
secant
function [x, hist] = secant(x, f, tola, tolr)
SECANT This a secant code with no line search.
This code terminates on small relative-absolute errors function [X, HIST] = SECANT(X, F, TOLA, TOLR) Inputs: X = initial iterate
F = function
TOLA = absolute error tolerance
TOLR = relative error tolerance
Output: X = approximate result
- 2009-12-04 03:38:55下载
- 积分:1