登录
首页 » Visual C++ » moshishibie

moshishibie

于 2008-04-26 发布 文件大小:8315KB
0 212
下载积分: 1 下载次数: 190

代码说明:

  的配套光盘源代码( the matching CD-ROM source code)

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • mss32
    最近在看hl2,发现mdl模型必须从36转到37,哈哈,恰好看到此贴,非常感谢。(recently watching hl2, mdl model must be found from 36 to 37, haha, just to see patch. Thank you very much.)
    2007-02-03 22:38:59下载
    积分:1
  • autorun
    一个使用控制台实现的关于设置开机自启动的小demo。(A realization about using the console to set boot the start of a small demo.)
    2014-09-27 11:01:44下载
    积分:1
  • DLLTEST
    动态库测试的例子Examples of dynamic libraries testsExamples of dynamic libraries tests(Examples of dynamic libraries tests)
    2014-10-22 13:23:49下载
    积分:1
  • mouse_demo
    EP1C6Q240C8的examples 鼠标口测试程序(The examples I EP1C6Q240C8 mouse test procedures)
    2007-10-22 20:51:38下载
    积分:1
  • MATLAB
    《MATLAB智能算法30个案例》分析源代码(" MATLAB intelligent algorithm 30 case" analyze the source code)
    2013-07-19 12:49:57下载
    积分:1
  • ejeu4w5i5e
    双目资料,很好的学习资料,帮助很大,谢谢大家(Binocular information, good learning materials, helpful, thank you)
    2010-03-09 14:09:48下载
    积分:1
  • VC-P-P-and-Matlab-mixed-programming
    实现VC++与Matlab的混合编程,解决这 个问题, 不仅能更好地发挥Matlab 强大的功能, 还能快速地进行软件开发, 尤其是当软件开发中需要实现复杂的数学算法、图形处理时尤为迫切。(The realization of VC++ and Matlab mixed programming, to solve thisA question, not only can play a better Matlab powerful function, can rapidly in software development, especially when the software development need to realize the complex mathematical algorithms, graphics processing is particularly urgent.)
    2012-04-02 19:48:08下载
    积分:1
  • ca
    一些基于元胞自动机的小程序 帮助理解元胞自动机(Cellular Automata)
    2013-05-16 09:45:11下载
    积分:1
  • HOTQ1
    一个非常红的画图程序,非常有意思,再此上传下(A very red paint program, very interesting, upload it again next)
    2011-10-04 09:52:14下载
    积分:1
  • PSO
    梯度下降法是最早最简单,也是最为常用的最优化方法。梯度下降法实现简单,当目标函数是凸函数时,梯度下降法的解是全局解。一般情况下,其解不保证是全局最优解,梯度下降法的速度也未必是最快的。梯度下降法的优化思想是用当前位置负梯度方向作为搜索方向,因为该方向为当前位置的最快下降方向,所以也被称为是”最速下降法“。最速下降法越接近目标值,步长越小,前进越慢。(The gradient descent method is the earliest and most simple and most commonly used optimization method. The gradient descent method is simple to realize. When the objective function is a convex function, the solution of the gradient descent method is a global solution. In general, the solution is not guaranteed to be the global optimal solution, and the gradient descent method is not necessarily the fastest. The optimization idea of gradient descent method is to use the current position negative gradient direction as the search direction, because the direction is the fastest descending direction of the current position, so it is also called the steepest descent method. The faster the slowest descent approach is closer to the target, the smaller the step, the slower the progress.)
    2018-01-29 21:44:10下载
    积分:1
  • 696518资源总数
  • 106148会员总数
  • 10今日下载