登录
首页 » matlab » immune

immune

于 2009-05-05 发布 文件大小:1KB
0 149
下载积分: 1 下载次数: 82

代码说明:

  这是一个用MATLAB编的免疫克隆算法优化函数的程序,免疫克隆算法是一种比较新的有效的优化算法,近两年对他的研究很多。(Artificial Immune)

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • spettro
    Evaluate frequency spectrum of signals
    2010-01-04 20:59:06下载
    积分:1
  • PolarRectangularConv0
    exploring polar triangle
    2010-01-14 12:50:15下载
    积分:1
  • OFDM
    说明:  OFDM完整仿真程序 包括QAM,qpsk调制仿真(OFDM Simulation Using Matlab,The perfect simulation of OFDM)
    2011-03-23 21:08:05下载
    积分:1
  • envelope
    可以用来求信号的上下包络线,在端点的处理上还有待优化(Demand signal envelope)
    2012-06-17 17:08:41下载
    积分:1
  • pattern
    group pattern in matlab source code
    2010-05-06 20:55:05下载
    积分:1
  • IIR
    程序实现用脉冲响应不变法和双线性变换法设计IIR滤波器,包括低通滤波器和高通滤波器,其中采样点N=1600,采样频率Fs=10000.(The same impulse response and bilinear transform IIR filter design, including low-pass filter and a high pass filter, where sampling points N = 1600, the sampling frequency Fs = 10000.)
    2015-03-24 15:36:52下载
    积分:1
  • leach3
    LEACH COD EWITHOUT DIRECT TRANSMISSION
    2013-05-11 20:55:03下载
    积分:1
  • [Staff-_MathWorks_Inc.]_MATLAB_student_version_l
    it is about matlab student tutorail
    2012-12-01 18:22:55下载
    积分:1
  • 多尺度样本熵
    说明:  自编多尺度样本熵程序,实例中用于一段轴承故障数据,简单易懂。MultiscaleSampleEntropy函数中的SampleEntropy也可以单独拎出来计算单个样本熵。(Multi scale sample entropy is used for a section of bearing fault data, which is easy to understand. SampleEntropy in the MultiscaleSampleEntropy function can also be picked up separately to calculate the entropy of a single sample.)
    2021-03-29 14:29:11下载
    积分:1
  • findlyap
    The alogrithm employed in this toolbox for determining Lyapunov exponents is according to the algorithms proposed in [1] A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano "Determining Lyapunov Exponents from a Time Series," Physica D, Vol. 16, pp. 285-317, 1985. [2] J. P. Eckmann and D. Ruelle, "Ergodic Theory of Chaos and Strange Attractors," Rev. Mod. Phys., Vol. 57, pp. 617-656, 1 The algorithm given in [1] is used for first-order systems while the QR-based algorithm proposed in [2] is applied for higher order systems. by Steve W. K. SIU, July 5, 1998. (The alogrithm employed in this toolbox for determining Lyapunov exponents is according to the algorithms proposed in [1] A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, "Determining Lyapunov Exponents from a Time Series," Physica D, Vol. 16, pp. 285-317, 1985. [2] J. P. Eckmann and D. Ruelle, "Ergodic Theory of Chaos and Strange Attractors," Rev. Mod. Phys., Vol. 57, pp. 617-656, 1985. The algorithm given in [1] is used for first-order systems while the QR-based algorithm proposed in [2] is applied for higher order systems. by Steve W. K. SIU, July 5, 1998. )
    2010-11-15 21:21:19下载
    积分:1
  • 696518资源总数
  • 105540会员总数
  • 37今日下载