-
LDPC_premier
我国数字电视地面国标和手机电视都采用了LDPC便解码方式。本文档包括Gallager的博士论文以及LDPC领域国内最佳教科书,是学习LDPC的最佳文献。(China Digital Television Terrestrial GB and mobile TV will use the LDPC decoding methods. This document, including Gallager)
- 2007-10-16 09:27:53下载
- 积分:1
-
matlabgenetictoolbox
此工具箱是英国设菲尔德(Sheffield)大学编写的MATLAB遗传算法工具箱,是使用的最广泛的遗传工具箱之一。在《MATLAB 遗传算法工具箱及应用》作 者:雷英杰 出版社:西安电子科技大学出版社 这本书中重点介绍了此工具箱。( Sheffield genetic matlab toolbox)
- 2009-05-04 17:24:27下载
- 积分:1
-
chanmodel_sui3
IEEE802.16系统规定的信道模型 适用于城市环境的SUI-3模型是WIMAX系统信道建模时的必备(Requirements for IEEE802.16 channel model applicable to the urban environment of the SUI-3 model is a WIMAX system channel modeling essential)
- 2008-07-08 15:13:39下载
- 积分:1
-
code
求解线性不定方程组的一个基解(未知数个数大于方程个数),代码简单有效,可以利用该代码求出所有基解,从而得到不定方程组解得一般形式(A radical solution for solving linear equations uncertain (unknown number greater than the number of equations), the code is simple and effective, you can use the code to all base solution obtained, resulting in variable equations have the general form of the solution)
- 2014-01-05 10:12:14下载
- 积分:1
-
AVL
Implementation of an AVL tree using C. A data structure type.
- 2014-01-09 03:18:41下载
- 积分:1
-
LocalEnhanced
基于MATLAB语言的局部增强的程序,供大家参考,适合入门者(MATLAB language based on local enhanced procedures for your reference, suitable for beginners)
- 2010-01-19 10:09:48下载
- 积分:1
-
zshylbw
利用adapt函数对自适应滤波网络对时变正弦信号进行自适应预测。(Adapt the use of adaptive filtering function network for time-varying sinusoidal signal adaptive prediction.)
- 2009-07-16 16:37:56下载
- 积分:1
-
EEMD
由黄等提出了对EMD的改进方法EEMD,5条程序经过尝试均可使用(By Wong et proposed an improved method for EMD EEMD, 5 bar program has been tried and can be used)
- 2013-09-02 18:09:21下载
- 积分:1
-
SIMULINK-PV-P-BUCK-CONVERTER
pv model with buck converter
- 2013-02-28 02:37:46下载
- 积分:1
-
src-fusion
A. Fusion at the Feature Extraction Level
The data obtained from each sensor is used to compute a
feature vector. As the features extracted from one biometric
trait are independent of those extracted from the other, it is
reasonable to concatenate the two vectors into a single new
vector. The primary benefit of feature level fusion is the
detection of correlated feature values generated by different
feature extraction algorithms and, in the process, identifying a salient set of features that can improve recognition accuracy
[14]. The new vector has a higher dimension and represents the
identity of the person in a different hyperspace. Eliciting this
feature set typically requires the use of dimensionality
reduction/selection methods and, therefore, feature level fusion
assumes the availability of a large number of training data.
- 2013-03-14 16:40:42下载
- 积分:1