-
suanshubianma
说明: 利用算数编码基本原理及其实现步骤,通过MATLAB实现算数编码。(Using the basic principle of arithmetic coding and its implementation steps, arithmetic coding is realized by MATLAB.)
- 2019-01-02 16:52:22下载
- 积分:1
-
GM
说明: 残差灰色模型的改进算法。可以得到高精确度的预测,很实用,并附有测试文件(Improved algorithm for gray model residuals. Can be predicted with high accuracy, very practical, with a test file)
- 2011-06-04 22:20:10下载
- 积分:1
-
edge_forcing
心血管分割,多尺度, 对于中心点的位置有很强的鲁棒性(Edge forcing)
- 2021-02-14 23:09:48下载
- 积分:1
-
fake_color
极化SAR图像处理中,将三个不同极化通道的数据进行为彩色合成的程序(Polarization SAR image processing, will be three different polarization data-channel color composite of the procedures for)
- 2008-12-13 11:21:11下载
- 积分:1
-
matlab_MRF_toy_examples
matlab 马尔科夫随机场简单的实现例子(Markov random field matlab implementation simple example)
- 2009-03-06 17:11:59下载
- 积分:1
-
Itti-saliency
itti算法进行感兴趣区域的选择,方法较好,可以直接运行。(itti algorithm select the region of interest ,and this program can run directly)
- 2013-02-03 15:20:43下载
- 积分:1
-
压缩感知中利用增广拉格朗日方程解最小稀疏正则化的恢复算法 DAL
压缩感知中利用增广拉格朗日方程解最小稀疏正则化的恢复算法(DAL solves the dual problem of (1) via the augmented Lagrangian method (see Bertsekas 82). It uses the analytic expression (and its derivatives) of the following soft-thresholding operation,
which can be computed for L1 and grouped L1 (and many other) sparsity inducing regularizers. If you are interested in our algorithm please find more details in our technical report or in my talk at Optimization for Machine Learning Workshop (NIPS 2009).)
- 2011-04-25 10:19:38下载
- 积分:1
-
rader1
说明: 雷达模拟LFM脉冲信号,模拟目标回波(目标距离50km,速度100m/s)和噪声信号(信噪比)(Radar simulated LFM pulse signal, simulated target echo (target distance 50km, speed 100M / s) and noise signal (signal-to-noise ratio))
- 2020-04-12 11:38:29下载
- 积分:1
-
WPF常用控件集(含源码)
WPF控件集
- 2020-04-08下载
- 积分:1
-
HaarPSRC=Vehicle-detection
运用harr特征+SRC(稀疏表示)分类实现的一种车辆检测方法,文件中提供了训练和测试车辆图片。由于时间原因,所用haar特征没有优化,维度过高,导致滑窗框图过慢,本代码只输出效果统计数据,以供大家参考学习稀疏表示在车辆检测中的应用。(Using harr feature+SRC (sparse representation) classification to achieve a vehicle detection method, the paper provides a training and test vehicle picture. Due to time reasons, the use of haar feature is not optimized, high dimension, resulting in sliding sash figure is too slow, the effect of the code only output statistics for your reference learning sparse representation in the vehicle detection.)
- 2013-07-31 11:21:35下载
- 积分:1