-
signals-snr-operations
signals snr ratio by opertions
- 2013-07-30 21:59:56下载
- 积分:1
-
MIT6_094IAP10_assn01.pdf
麻省理工学院introduction to matlab课程作业指导,包含matlab实例,相互交流(excellent matlab exercises homework for improving matlab )
- 2015-01-15 15:21:45下载
- 积分:1
-
yuyinjipin
加入3点或5点中值平滑处理后再绘制上述基频曲线与未平滑曲线比较,观测完整一段话音的基频包络变化情况(Add to 3:00 or 5:00 in the value of the smoothing then draw the base frequency curve is not a smooth curve compared with the observed period of complete voice baseband envelope changes)
- 2014-02-21 13:17:20下载
- 积分:1
-
matlab三维
说明: 基于matlab的三维重建技术与实现,该技术可以完美重建三维图像(three-dimensional reconstruction)
- 2020-03-17 21:01:11下载
- 积分:1
-
prezhou
说明: matlab对神经网络的实现的源码,是学习神经网络的好参考材料(Matlab right neural network on the realization of the source of neural network learning a good reference material)
- 2005-12-06 00:17:31下载
- 积分:1
-
Source-codes-of-IF-ABC-algorithm
是蛋白质二级结构优化(基于2维度非晶格模型)的优化代码,可直接运行,算法书写简单,高中生都能看懂。唯独一点,必须引用我们的两篇论文,否则算侵犯版权。( description : A self-organized matlab m file for protein structure
optimization using 2D off-lattice model and ABC algorithm.
Users MUST cite the following two articles if the codes are implemented in their studies
(1) Li, B., Li, Y., & Gong, L. (2014). Protein secondary structure optimization using an improved artificial bee colony algorithm based on AB off-lattice model. Engineering Applications of Artificial Intelligence, 27, 70-79.
(2) Li, B., Gong, L., & Yao, Y. (2013, October). On the performance of internal feedback artificial bee colony algorithm (IF-ABC) for protein secondary structure prediction. In Advanced Computational Intelligence (ICACI), 2013 Sixth International Conference on (pp. 33-38). IEEE.)
- 2015-05-15 12:36:18下载
- 积分:1
-
case30
这是一个30节点的IEEE-30标准测试系统后感数据代码(This is a 30-node IEEE-30 standard test system a sense of the data code)
- 2009-03-31 10:59:31下载
- 积分:1
-
456773889889
说明: matlab 书籍源码matlab 书籍源码matlab 书籍源码(Source Books Source Books matlab matlab matlab source books)
- 2010-03-31 10:02:46下载
- 积分:1
-
ZCR
autocov computes the autocovariance between two column vectors X and Y with same length N using the Fast Fourier Transform algorithm from 0 to N-2.
The resulting autocovariance column vector acv is given by the formula:
acv(p,1) = 1/(N-p) * sum_{i=1}^{N}(X_{i} - X_bar) * (Y_{i+p} - Y_bar)
where X_bar and Y_bar are the mean estimates:
X_bar = 1/N * sum_{i=1}^{N} X_{i} Y_bar = 1/N * sum_{i=1}^{N} Y_{i}
It satisfies the following identities:
1. variance consistency: if acv = autocov(X,X), then acv(1,1) = var(X)
2. covariance consistence: if acv = autocov(X,Y), then acv(1,1) = cov(X,Y)
- 2013-05-26 22:12:50下载
- 积分:1
-
MVU
流形学习中的重要方法MVU的源代码,也就是所谓的sde-Manifold learning an important means of MVU(MVU )
- 2013-08-09 11:11:48下载
- 积分:1