登录
首页 » WORD » comm.code

comm.code

于 2010-12-05 发布 文件大小:251KB
0 175
下载积分: 1 下载次数: 1

代码说明:

  matlab code of a carier

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • smobyclick
    helpful code to mooths data by clicking on the figure
    2010-09-29 19:16:51下载
    积分:1
  • matlab-base
    matlab的讲义,一些基础知识,语法知识等等(matlab lectures, some basic knowledge, grammar, etc.)
    2011-11-11 14:28:30下载
    积分:1
  • AntOptimization
    Ant Optimization algorithm
    2013-12-17 00:27:36下载
    积分:1
  • 5
    说明:  这是一篇关于基于图像序列的人体步态识别方法研究的文章(This is a sequence of image-based recognition of human gait article)
    2010-05-06 19:12:58下载
    积分:1
  • ASSIGNMENT
    digital communication codes
    2012-05-19 18:48:13下载
    积分:1
  • Robust-Control-Toolbox
    MATLAB鲁棒控制工具箱,详细介绍工具箱的应用及实例讲解。(MATLAB Robust Control Toolbox, detailing the toolbox applications and examples to explain.)
    2012-06-27 22:20:56下载
    积分:1
  • JPDA
    在运动的位置叠加噪声。进行JPDA概率数据关联及kalman滤波。 两运动目标在x-y平面做匀速直线运动。初始位置是(4000,1200)(300,1500)速度分别是(200,200)(400,200)传感器对量目标进行位置状态量测。 采样间隔T=1,点数n=80.检测概率为1,正确量测落入跟踪内的概率为0.99,杂波均匀分布的密度为2个/km2由RAND函数产生在[0,1]上均匀分布的随机变量,跟踪门限为9.21。 (Superimposed noise in the position of the movement. JPDA probabilistic data association and kalman filtering. Two moving targets uniform linear motion in the xy plane. The initial position (4000,1200) (300,1500) speed (200,200) (400,200) position sensor on the amount of target state measurements. Sampling interval T = 1, points n = 80. Detection probability of correctly measured fall into the tracking probability 0.99, 2/km2 clutter uniform distribution of density generated by the RAND function [0,1] uniformly distributed random variables tracking threshold of 9.21.)
    2021-04-26 20:18:45下载
    积分:1
  • bpsk_ofdm_commtoolbox
    i am in need 4g related matlab code.i learning in area of lte-advanced downlink for writing the matlab code
    2014-10-12 23:48:24下载
    积分:1
  • bilinear
    In this paper, we introduce a new machine-learning-based data classification algorithm that is applied to network intrusion detection. The basic task is to classify network activities (in the network log as connection records) as normal or abnormal while minimizing misclassification. Although different classification models have been developed for network intrusion detection, each of them has its strengths and weaknesses, including the most commonly applied Support Vector Machine (SVM) method and the Clustering based on Self-Organized Ant Colony Network (CSOACN). Our new approach combines the SVM method with CSOACNs to take the advantages of both while avoiding their weaknesses. Our algorithm is implemented and evaluated using a standard benchmark KDD99 data set. Experiments show that CSVAC (Combining Support Vectors with Ant Colony) outperforms SVM alone or CSOACN alone in terms of both classification rate and run-time efficiency.
    2013-12-21 13:40:52下载
    积分:1
  • 0100000069_supp
    with development of embedded adaptive controllers for mimo scheduling.
    2014-02-25 14:59:33下载
    积分:1
  • 696518资源总数
  • 106155会员总数
  • 8今日下载