登录
首页 » matlab » LanczosandCG

LanczosandCG

于 2009-12-17 发布 文件大小:11KB
0 124
下载积分: 1 下载次数: 25

代码说明:

  在数值分析中,比较CG和Lanczos的计算结果.并比较了不同特征值情况下的计算结果。(in numerical value analyse, Compare the CG and Lanczos, futher more, we compare the CG and Lanczos in the different eigenvalue.)

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • cheng-xu
    针对常规PID控制不具有自适应能力,对于时变、非线性系统控制效果不佳。提出了将模糊技术与PID控制相结合的控制方式,设计模糊控制器。(Conventional PID control with adaptive capabilities, time-varying, nonlinear system control ineffective. Fuzzy and PID control combined control mode fuzzy controller design.)
    2013-05-11 00:44:09下载
    积分:1
  • text-classification
    matlab编写的文本分类的程序,可以对已经分好词的文本进行分类,先自己导入数据,用libsvm中的svm进行分类和预测,特征用tfidf算法,还利用卡方检验进行了特征选择,可自行设定阈值。(matlab prepared text classification program, you can have a good word of text classification, classification and prediction using libsvm in svm, characterized by tfidf algorithm, also used the chi-square test was used for feature selection, you can set thresholds on their own.)
    2014-01-15 15:46:40下载
    积分:1
  • 白噪声、M序列和噪信比
    白噪声及有色噪声序列、M序列的产生程序,噪信比计算程序(White noise and colored noise sequence, M sequence generation procedure, noise to noise ratio calculation program)
    2018-04-27 09:10:34下载
    积分:1
  • MATLAB_programming_algorithm_source_of_Ordinary_Di
    MATLAB程序设计之常微分方程算法源码MATLAB programming algorithm source of Ordinary Differential Equations(MATLAB programming algorithm for ordinary differential source MATLAB programming algorithm source of Ordinary Differential Equations)
    2010-08-02 11:12:45下载
    积分:1
  • GMSK_MSK
    MSK和GMSK数字调制方式的比较,主要利用simulink模块来实现仿真。(Comparison between GMSK-Modulation (GSM standard), MSK Type A-Modulation and MSK Type B-Modulation)
    2011-05-09 11:47:46下载
    积分:1
  • New-Folder
    Low pass filter desinged using matlab
    2011-10-08 18:06:47下载
    积分:1
  • rad2FFT
    This is the code for radix 2 64 point fft which is written in matlab.
    2015-01-31 01:49:12下载
    积分:1
  • Basic_EM_Code
    SampleGenerate.m 生成EM_data数据 GMM_EM_Main.m 执行EM temp2是测试如何求高斯密度的函数(SampleGenerate.m GMM_EM_Main.m temp2)
    2009-09-19 00:36:44下载
    积分:1
  • closepole
    [自動控制]CLOSED LOOP POLES計算工具,使用者輸入系統Function(由TF, ZPK, SS, FDS建立),以及feedback controller,程式會計算出closed loop poles. (CLOSED LOOP POLES calculation tools for automation control. POLE=POLEPLACE(P,C) returns the closed loop system poles for a given plant P and a given controller C. Input P is the given plant (created with either TF, ZPK, SS, or FRD). Input C is the given controller. Output POLE is a vector representing all desired closed loop poles. )
    2009-06-01 14:53:11下载
    积分:1
  • ForcedPendulum
    This simulink model simulates the damped driven pendulum, showing it s chaotic motion. theta = angle of pendulum omega = (d/dt)theta = angular velocity Gamma(t) = gcos(phi) = Force omega_d = (d/dt) phi Gamma(t) = (d/dt)omega + omega/Q + sin(theta) Play with the initial conditions (omega_0, theta_0, phi_0 = omega(t=0), theta(t=0), phi(t=0)) and the system parameters (g, Q, omega_d) and the solver parameters/method. Chaos can be seen for Q=2, omega_d=w/3. The program outputs to Matlab time, theta(time) & omega(time). Plot the phase space via: plot(mod(theta+pi, 2*pi)-pi, omega, . ) Plot the Poincare sections using: t_P = (0:2*pi/omega_d:max(time)) plot(mod(spline(time, theta+pi, t_P), 2*pi)-pi, spline(time, omega, t_P), . ) System is described in: "Fractal basin boundaries and intermittency in the driven damped pendulum" E. G. Gwinn and R. M. Westervelt PRA 33(6):4143 (1986) (This simulink model simulates the damped driven pendulum, showing it s chaotic motion. theta = angle of pendulum omega = (d/dt)theta = angular velocity Gamma(t) = gcos(phi) = Force omega_d = (d/dt) phi Gamma(t) = (d/dt)omega+ omega/Q+ sin(theta) Play with the initial conditions (omega_0, theta_0, phi_0 = omega(t=0), theta(t=0), phi(t=0)) and the system parameters (g, Q, omega_d) and the solver parameters/method. Chaos can be seen for Q=2, omega_d=w/3. The program outputs to Matlab time, theta(time) & omega(time). Plot the phase space via: plot(mod(theta+pi, 2*pi)-pi, omega, . ) Plot the Poincare sections using: t_P = (0:2*pi/omega_d:max(time)) plot(mod(spline(time, theta+pi, t_P), 2*pi)-pi, spline(time, omega, t_P), . ) System is described in: "Fractal basin boundaries and intermittency in the driven damped pendulum" E. G. Gwinn and R. M. Westervelt PRA 33(6):4143 (1986) )
    2010-02-17 07:28:51下载
    积分:1
  • 696518资源总数
  • 105595会员总数
  • 1今日下载