-
Matlab
matlab教学从入门到精通 是初学者必备(matlab teaching beginners from entry to the master is essential)
- 2011-05-12 22:13:58下载
- 积分:1
-
nlayerEfficiencies
计算米氏散射专业程序。做散射等必须的算法.欢迎下载使用(Mie scattering calculations professional procedures. The algorithm must be scattering. Welcome to download)
- 2010-10-05 10:55:10下载
- 积分:1
-
06071402Newtonmethodfunctionandresults
matlab牛顿法的函数和执行调用的结果(Newton method functionand the results )
- 2009-06-02 17:57:49下载
- 积分:1
-
TRM_focusing
建立单频矩形脉冲信号,时间反转镜仿真,计算信号时反过后的能量增益(Establishment of single-frequency rectangular pulse signal, the time reversal mirror simulation, after calculating signal energy gain against)
- 2013-09-08 18:01:40下载
- 积分:1
-
GA-Tuned-Input-Shaper
ga tuned input shaper
- 2015-03-19 21:53:59下载
- 积分:1
-
Regression_Demos
示例用法的以下的统计工具箱函数
LinearModel
NonLinearModel
GeneralizedLinearModel
(Example code illustrating the use of the following Statistics Toolbox functions
LinearModel
NonLinearModel
GeneralizedLinearModel)
- 2012-04-23 13:21:42下载
- 积分:1
-
Untitl
凸轮的轮廓曲线的图形,机械凸轮的轮廓曲线的线性图。(Cam profile curve graphics, mechanical cam profile The linear map.)
- 2011-06-27 12:30:21下载
- 积分:1
-
GetNeighbourInform
最新版改进Salam网络拓扑随机生成算法通用MATLAB源码,你值得拥有!(The latest version has improved Salam common network topology random generation algorithm MATLAB source, you deserve!)
- 2013-08-13 14:58:08下载
- 积分:1
-
xiaobo1
主要通过小波算法,实现对信号的分析,然后通过信号重构,实现与原信号对比。(Wavelet analysis, signal reconstruction)
- 2014-08-28 21:33:49下载
- 积分:1
-
matlab
聚类算法,不是分类算法。分类算法是给一个数据,然后判断这个数据属于已分好的类中的具体哪一类。聚类算法是给一大堆原始数据,然后通过算法将其中具有相似特征的数据聚为一类。这里的k-means聚类,是事先给出原始数据所含的类数,然后将含有相似特征的数据聚为一个类中。所有资料中还是Andrew Ng介绍的明白。首先给出原始数据{x1,x2,...,xn},这些数据没有被标记的。初始化k个随机数据u1,u2,...,uk。这些xn和uk都是向量。根据下面两个公式迭代就能求出最终所有的u,这些u就是最终所有类的中心位置。(Clustering algorithm, not a classification algorithm. Classification algorithm is to give a figure, and then determine the data belonging to a specific class of good which category. Clustering algorithm is to give a lot of raw data, and then through the algorithm which has similar characteristics data together as a class. Here k-means clustering, is given in advance the number of classes contained in the raw data, then the data contain similar characteristics together as a class. All information presented in or Andrew Ng understand. Firstly, raw data {x1, x2, ..., xn}, the data is not labeled. K random initialization data u1, u2, ..., uk. These are the vectors xn and uk. According to the following two formulas can be obtained final iteration all u, u is the ultimate all these classes the center position.)
- 2014-02-18 09:59:02下载
- 积分:1