-
pianyi
Shepp-Logan CT 旋转中心偏移伪像仿真,矫正 (Shepp-Logan CT artifact rebuilt)
- 2011-01-25 14:56:12下载
- 积分:1
-
GP-programming-
本程序是对遗传算法的改进实现,在遗传操作中的选择 复制 交叉部分做了改进。代码调试通过 可以通过宏命令修改迭代次数。(This program is the improvement of genetic algorithm implementation, the choice of operation in the replication of genetic cross-section are improved. Debugging through macro commands can be modified by the number of iterations.)
- 2011-05-08 18:31:35下载
- 积分:1
-
AZZOUZZI
correcteur pid p pi némurique
- 2015-01-22 04:00:12下载
- 积分:1
-
Final_code_test_1
Code for PPG signal to estimate the HR of subjects doing intense exercises
- 2015-03-14 03:02:51下载
- 积分:1
-
genetic-algorithm-
遗传算法实例分析,应用遗传算法实现了例子的最终结果值(Examples of genetic algorithm analysis)
- 2014-01-15 17:22:13下载
- 积分:1
-
EFG-solver
理想流体势无网格伽辽金法二维程序,EFG法(Ideal fluid Potential free Galerkin method D program, EFG method)
- 2016-10-08 16:58:40下载
- 积分:1
-
Matlab-Chinese-help-documentation
说明: 对MATLAB自带的帮助文档进行汉化,可以更方便的了解MATLAB(MATLAB comes with the help of the finished document, you can more easily understand the MATLAB)
- 2011-03-24 22:07:20下载
- 积分:1
-
10040129
文件包含两个m文件,一个是QPSK的主函数文件和单径的瑞利衰落信道fade.m文件,实现的对qpsk的过程进行了仿真(在瑞利和高斯信道的作用下)。绘制出了在各个阶段的波形图(M file contains two files, one file is the main function of QPSK and single path Rayleigh fading channel fade.m file qpsk the process of implementation of a simulation (in the Rayleigh and Gaussian channel under the action.) Drawn out at each stage of the waveform)
- 2010-11-09 23:00:36下载
- 积分:1
-
precoder-ande-decoderq
最大似然检测的相关程序,用于单用户MIMO,初学编程(Maximum likelihood detection procedures for single-user MIMO, novice programming)
- 2011-09-21 09:46:35下载
- 积分:1
-
Pso
模拟一群鸟捕食的情景,从而达到优化目标函数的目的,这就是粒子群算法!起初在可行的空间中随机的产生一群粒子,然后让每个粒子开始在虚拟的空间中向四面八方飞翔,并且每个粒子都记下他们飞过的适应值(也就是目标优化函数)最高的点,而且整个粒子群有一个最高适应值个体,这样,粒子在飞翔的时候尽量朝向自己曾飞过的最好的点和集体的最好的点。最后达到收敛到近似最优点的目的。
(Simulation of a group of birds preying on the scene, so as to achieve the purpose of optimizing the objective function, that is, PSO! At first, where feasible, have a space in a group of random particles, and then let the beginning of each particle in a virtual space to fly in all directions, and each particle they have in mind over the fitness value (that is objective optimization function) the highest point , and the whole particle swarm adaptation has a maximum value of the individual, so that particles in the fly when he had flown as far as possible towards the best point and collective best point. Finally reaching the merits of convergence to approximate most purposes.)
- 2007-10-24 14:45:05下载
- 积分:1