-
FNRCGH
利用菲涅尔衍射计算给定图片的全息图案,程序里包含详细注解方便根据实际情况调整参数。(Computer generated holography using Fresnel diffraction)
- 2015-03-26 09:49:28下载
- 积分:1
-
LMS-based_Algorithms
Least /mean Square (LMS) algorithm for adaptive filtering using matlab with examples
- 2013-12-21 16:37:01下载
- 积分:1
-
Chapter2
This file include very useful matlab code to CDMA communication
- 2011-04-29 20:58:41下载
- 积分:1
-
TestSurfaceIndex
从一个三维图像中取得上面各点的形状索引以及曲率。(get the shape index and curedness from a 3D range image)
- 2012-04-25 20:52:00下载
- 积分:1
-
jiefeifengfangcheng
从3种不同的方法来分析,实现解微分方程。(From three kinds of different ways to analyze and realize solving differential equations.)
- 2015-01-20 14:43:27下载
- 积分:1
-
Kruskal
假设给定一个加权连通图G,G的边集合为E,顶点个数为n,要求其一棵最小生成树T。(Suppose given a weighted connected graph G, G the edge set is E, the number of vertices is n, requiring a minimum spanning tree T.)
- 2011-07-20 20:00:42下载
- 积分:1
-
Slam
基于卡尔曼滤波的机器人定位及地图创建(salm),对1D、2D、3D等情况分别进行仿真(Kalman filter-based robot localization and map building (salm), on the 1D, 2D, 3D, etc. were simulated)
- 2010-06-03 22:00:47下载
- 积分:1
-
RFLNA
本文设计了低噪声LNA放大器,较好了达到了指标,但是仍需改进。(This article is designed LNA low-noise amplifier has achieved a good target, but still needed improvement.)
- 2009-12-13 00:15:36下载
- 积分:1
-
inpaint
本程序是基于MATLAB图像查看像素值的算法,用户可以查看图像中任一点的像素值(This procedure is based on MATLAB image to view the pixel values of the algorithm, the user can view images of any pixel value)
- 2012-04-27 19:03:44下载
- 积分:1
-
Optimization_Newton
设r是f(x) = 0的根,选取x0作为r初始近似值,过点(x0,f(x0))做曲线y = f(x)的切线L,L的方程为y = f(x0)+f (x0)(x-x0),求出L与x轴交点的横坐标 x1 = x0-f(x0)/f (x0),称x1为r的一次近似值。过点(x1,f(x1))做曲线y = f(x)的切线,并求该切线与x轴交点的横坐标 x2 = x1-f(x1)/f (x1),称x2为r的二次近似值。重复以上过程,得r的近似值序列,其中x(n+1)=x(n)-f(x(n))/f (x(n)),称为r的n+1次近似值(Let r is f (x) = 0 root, select the initial approximation x0 as the r, over point (x0, f (x0)) to do the curve y = f (x) the tangent L, L the equation y = f ( x0)+ f ' (x0) (x-x0), find the intersection of L and the x-axis of abscissa x1 = x0-f (x0)/f' (x0), x1 is called an approximation r. Through points (x1, f (x1)) to do the curve y = f (x) the tangent, and find the intersection of the tangent with the x-axis of abscissa x2 = x1-f (x1)/f ' (x1), x2 is called r the second approximation. Repeat the process, get an approximation of the sequence r, where x (n+1) = x (n)-f (x (n))/f ' (x (n)), as an approximation of r n+1 times)
- 2011-06-21 21:13:09下载
- 积分:1