-
rgb-cmyk
RGB-CMYK by matlab sourcecode
- 2009-06-22 11:05:51下载
- 积分:1
-
WinRar密码破译
说明: 破解WinRAR解密文件,适用Windows平台系统(Cracking WinRAR Decrypted Files)
- 2020-06-19 16:00:02下载
- 积分:1
-
ZCRYPT23
ZIP文件的一个编解码算法,主要用于ZIP文件的加解密。(ZIP file of a codec algorithm, mainly used in ZIP file encryption and decryption.)
- 2007-11-26 12:46:33下载
- 积分:1
-
jp5
这是一组JPEG解码的说明和源代码,详细说明在文件的开头部分(This is a group of JPEG decoding instructions and source code, a detailed description of the document at the beginning of)
- 2008-08-05 16:16:44下载
- 积分:1
-
rtl
读图转灰度3 bit量化,模拟游程编码解码过程(Gray Level 3 Bit Quantization for Run-length Coding and Decoding)
- 2019-05-14 21:26:25下载
- 积分:1
-
CS_OMP
压缩感知,对一维信号进行压缩感知,并还原信号。(Compressed sensing, the one-dimensional signal compressed sensing, and redox signaling)
- 2012-12-26 10:41:14下载
- 积分:1
-
DS4
设电文字符集D及各字符出现的概率F如下:
D={a,b,c,d,e,f,g,h}(字符数n=8)
F={5,29,7,8,14,23,3,11}( )
编写完成下列功能的程序:
①构造关于F的Huffman树;
②求出并打印D总各字符的Huffman编码。
程序结构: 类型说明;
构造Huffman树的函数:Huffman_tree(H[m+1]);
求Huffman编码的函数:Huffman_code(code[n+1]);
main()
{ 变量说明;
输入字符集D及频率F;
调用Huffman_tree(H);
调用Huffman_code(code);
打印编码;
Y 继续?
N
停止
}
- 2015-06-06 16:41:33下载
- 积分:1
-
MPEG4-ARM
代码实现了基于ARM7的MPEG-4视频解码器,由C代码和汇编混合编写,已经在ARM7TDMI平台调试通过。(Code based on the ARM7 realize the MPEG-4 video decoder, from C code and compilation of mixed-prepared, has been adopted ARM7TDMI debugging platform.)
- 2008-08-16 17:42:31下载
- 积分:1
-
1
说明: 霍夫曼编码解码,实用程序,源程序,只用好用,通用。(Huffman encoding and decoding, utilities, source code, using only easy to use, universal.)
- 2013-06-20 14:57:58下载
- 积分:1
-
A-REMARK-ON-COMPRESSED-SENSING
说明: 一篇关于压缩感知的经典文章,压缩感知(Compressed sensing,简称CS,也称为Compressive sampling)理论异于近代奈奎斯特采样定理,它指出:利用随机观测矩阵可以把一个稀疏或可压缩的高维信号投影到低维空间上,然后再利用这些少量的投影通过解一个优化问题就可以以高概率重构原始稀疏信号,并且证明了这样的随机投影包含了原始稀疏信号的足够信息。(A classic article on compressed sensing, compressive sensing (Compressed sensing, referred to as CS, also known as Compressive sampling) different from the modern theory of the Nyquist sampling theorem, which states: the use of a random measurement matrix can be sparse or compressible high-dimensional signal projected to low dimensional space, and then use a small amount of projection by solving an optimization problem to be sparse with high probability to reconstruct the original signal, and prove that random projection of the original sparse signal contains enough information.)
- 2011-04-10 08:29:58下载
- 积分:1