登录
首页 » matlab » zmccdma_gold

zmccdma_gold

于 2010-03-10 发布 文件大小:1KB
0 183
下载积分: 1 下载次数: 5

代码说明:

  通过matlab建立码分多址通信系统的仿真平台,并仿真了扩频通信的性能(Matlab code division multiple access communication system through the establishment of the simulation platform, and simulated the performance of spread spectrum communication)

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • danchunxing
    说明:  单纯形法 主要进行最优求解,环境为MATLAB.以一个例子进行简单说明。(Simplex method for the optimal solution of the main, the environment for MATLAB. To an example of a simple description.)
    2008-11-25 19:41:55下载
    积分:1
  • QPSK
    BER performance in QPSK modulation
    2010-07-15 17:48:29下载
    积分:1
  • zaoshengxitongbianshi
    含有噪声的多维非线性系统辨识!!! (Noisy multi-dimensional non-linear system identification! ! !)
    2009-11-13 16:44:55下载
    积分:1
  • Segregation
    用LBM方法模拟的两相流运动,希望能帮助大家了解应用格子Boltzmann方法(The two-phase flow simulation by LBM and want to help you understand the application of lattice Boltzmann method)
    2011-05-21 19:37:48下载
    积分:1
  • fwddsp
    DFT alogrithm in matlab
    2011-09-02 18:05:39下载
    积分:1
  • chaoliu
    基于牛顿法的配网潮流计算程序,采用改进牛顿法,对初学者有很大帮助(Calculation is based on Newton s method with network flow program, an improved Newton, a great help for beginners)
    2014-02-07 14:59:33下载
    积分:1
  • flops
    matlab matrix processing functions
    2010-12-08 01:50:41下载
    积分:1
  • 2d0f67dd23d0
    Voice filter speech processing voice filter implementation developement
    2011-01-30 02:46:43下载
    积分:1
  • matcom4.5
    matcam 4.5 安装及下载指导 链接matlab和visual,实现matlab的高级编程(matcam 4.5 matlab和visual)
    2011-07-19 12:40:46下载
    积分:1
  • KNN
    K最邻近密度估计技术是一种分类方法,不是聚类方法。 不是最优方法,实践中比较流行。 通俗但不一定易懂的规则是: 1.计算待分类数据和不同类中每一个数据的距离(欧氏或马氏)。 2.选出最小的前K数据个距离,这里用到选择排序法。 3.对比这前K个距离,找出K个数据中包含最多的是那个类的数据,即为待分类数据所在的类。(K nearest neighbor density estimation is a classification method, not a clustering method. It is not the best method, but it is popular in practice. Popular but not necessarily understandable rule is: 1. calculate the distance between the data to be classified and the data in each other (Euclidean or Markov). 2. select the minimum distance from the previous K data, where the choice sorting method is used. 3. compare the previous K distances to find out which K data contains the most data of that class, that is, the class to which the data to be classified is located.)
    2020-10-23 14:37:22下载
    积分:1
  • 696518资源总数
  • 106148会员总数
  • 10今日下载