登录
首页 » matlab » jibenpujianfa

jibenpujianfa

于 2010-03-23 发布 文件大小:1KB
0 185
下载积分: 1 下载次数: 0

代码说明:

说明:  这是语音信号处理里面的,基本谱减法,处理的效果很不错,很适合初学者研究!(This is the speech signal processing inside the basic spectral subtraction to deal with the effect of very good, very suitable for beginners study!)

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • matlabchengxu
    基于二维图像进行三维重建效果还可以,经测试误差较大(Two dimensional image reconstruction effect is also can be based on, after testing error)
    2013-08-03 19:23:21下载
    积分:1
  • MIMOchoice_version1.0
    天线选择的参考资料,初学者必备!很有用的哦!(Reference antenna selection, beginners must have! Oh, very useful!)
    2014-09-21 03:32:14下载
    积分:1
  • nonlinear-filtering
    《卡尔曼滤波与组合导航》一书中非线性滤波章节的知识,EKF,UKF,UPF,PF各算法流程比较详细(the flow of EKF,UKF,UPF,PF)
    2015-02-27 11:14:46下载
    积分:1
  • copula1
    说明:  matlab copula 应用实例 Copula 理论及其在 matlab 中的实现程序应用实例(Matlab Copula Application Example Copula Theory and Its Implementation Program Application Example in MATLAB)
    2019-05-22 09:34:58下载
    积分:1
  • newton
    Cauchy s Method for Multiple Variable Functions
    2010-12-22 12:54:44下载
    积分:1
  • S-Function
    这是matlab中S函数的编写手册,给想用simulink作控制的提供了一个好的载体。(This is a matlab function in S to prepare manuals, to want to use simulink for control provides a good vehicle.)
    2010-01-22 14:55:49下载
    积分:1
  • face_detection_by_template_tutorial
    基于模板匹配的人脸检测教程,matlab代码(tutorial of face detection by template)
    2013-04-16 19:46:22下载
    积分:1
  • 1
    说明:  主成分分析的matlab源程序,用以标准化数据,精简指标,减少指标之间信息的重叠。(Principal component analysis matlab source for standardized data, streamline indicators, reduce duplication of information between indicators)
    2014-02-23 13:27:22下载
    积分:1
  • spca
    稀疏主成分算法函数,内有详细的算法使用说明(SPCA function)
    2016-10-29 04:37:50下载
    积分:1
  • test6
    说明:  matlab实验 用给定的多项式,y=x3-6x2+5x-3,产生一组数据(xi,yi,i=1,2,…,n),再在yi上添加随机干扰(可用rand产生(0,1)均匀分布随机数,或用rands产生N(0,1)分布随机数),然后用xi和添加了随机干扰的yi作的3次多项式拟合,与原系数比较。 如果作2或4次多项式拟合,结果如何? (matlab experiment with a given polynomial, y = x3-6x2+5 x-3, generated a set of data (xi, yi, i = 1,2, ..., n), then add random noise in yi (available rand generation (0,1) uniformly distributed random number, or rands generated N (0,1) random numbers), then xi and yi to add a random disturbance polynomial fitting for the three times, compared with the original coefficient . If 2 or 4 times for polynomial fitting, the result?)
    2010-04-22 20:27:58下载
    积分:1
  • 696516资源总数
  • 106409会员总数
  • 8今日下载