登录
首页 » matlab » MP

MP

于 2011-03-04 发布 文件大小:2KB
0 171
下载积分: 1 下载次数: 1

代码说明:

说明:  经典的信号稀疏分解算法MP的实现。随着迭代次数增大,恢复的信号越精确。(The classic signal sparse decomposition algorithm MP . With the number of iterations increases, the more accurate the signal is recovered)

下载说明:请别用迅雷下载,失败请重下,重下不扣分!

发表评论

0 个回复

  • codes
    THE ZIP FILE CONTAINS ALL THE PROGRAMS OF A BOOK NEURAL NETWROK FOUNDATIONS BY SATISH KUMAR
    2009-04-08 19:33:32下载
    积分:1
  • matlab
    MATLAB命令学习。。。常用命令总结。可以看看。(MATLAB you can learn)
    2014-12-29 20:10:21下载
    积分:1
  • multi_methods_DOA
    基于多种经典参数估计算法的窄带信号源DOA估计(for narrowband signals DOA estimation Based on a variety of classic algorithms )
    2012-07-01 00:41:55下载
    积分:1
  • DBSCAN
    DBSCAN clustering in vietnamese
    2014-11-21 02:27:07下载
    积分:1
  • The-BP-neural-network
    Matlab的编程例题,关于BP神经网络的PID温度控制(Matlab programming examples on BP neural network PID temperature control)
    2013-10-12 14:11:23下载
    积分:1
  • jiqirenpaibao
    讲述了基于matlab的排爆机器人的控制与仿真,具有较好效果(About the control and simulation matlab-based EOD robot, with good results)
    2014-09-19 20:29:30下载
    积分:1
  • LAP-TRINH-MATLAB-2008a
    this source is very helpfull for technology student, who is the first in programming with matlab,
    2013-10-05 15:07:04下载
    积分:1
  • arithXover
    遗传算法中交叉算子的MATLAB程序 (Genetic algorithm crossover operator of the MATLAB program)
    2009-03-12 16:59:00下载
    积分:1
  • wavelettransformation
    选择db10 小波和db10 小波两个小波函数实现了小波变换(Choose two db10 wavelet and wavelet db10 wavelet function implementation of wavelet transform)
    2020-07-02 18:40:01下载
    积分:1
  • EMALGORITHM
    In statistics, an expectation-maximization (EM) algorithm is a method for finding maximum likelihood or maximum a posteriori (MAP) estimates of parameters in statistical models, where the model depends on unobserved latent variables. EM is an iterative method which alternates between performing an expectation (E) step, which computes the expectation of the log-likelihood evaluated using the current estimate for the latent variables, and a maximization (M) step, which computes parameters maximizing the expected log-likelihood found on the E step. These parameter-estimates are then used to determine the distribution of the latent variables in the next E step.
    2010-12-14 17:04:44下载
    积分:1
  • 696518资源总数
  • 105873会员总数
  • 12今日下载